295 research outputs found

    Creating figures: why re-imagining urban structure supports a regenerative urban model

    Get PDF
    Some authors describe the contemporary metropolis like the field where co-exist simultaneous strategies of exploitation of fragmentary opportunities provided by the specific conditions of places (Florida, Bagnasco, Solá-Morales): physical (geography, infrastructures, etc.), social (people, culture and local values, etc.) and economic conditions. In their opinion, the causes of the ‘lateral’ development of the city could be (i) the relationships between the different elements of the land mosaic (Forman) and (ii) the fragmentary logics of the current urban realities. This important process of transformation would integrate the classic ‘lineal’ growth, more related to the urban rising along infrastructures. The result of these interactions is the change of scales in the performing of contemporary urban phenomena. Several authors have been interested in studying this new reality, called ‘exopolis’ (Soja), city-region (De las Rivas, Portas & al.) or metropolizated territory (Indovina, Monclús). Those not-conventional approaches are necessary to understand the contemporary urban condition and its complex, unstable, transient dynamics. Nowadays, several traditional concepts and ideas have become less useful and too rigid to achieve this target. This lack of effectiveness regards the discipline as a whole, divided between sectorial analysis and fragmentary solutions. In our opinion, using figures as ‘images with the potential to represent new territorial realities’ is one of the most important steps to produce an innovative and non-conventional understanding of post-metropolitan (Soja) urban space. This paper is aimed at explaining why figures are more useful than images to understand the complex urban pattern of current territory, as well as demonstrating this idea with the case studies of Valladolid and its emerging urban area. The result is a way to show the structure of this territory, which is more coherent with a contemporary narrative of space, and closer to its spatial and temporal dimensions. This is something not completely original but in this paper we present our views on it

    Transcriptomic effects of Tet-on and mifepristone-inducible systems in mouse liver

    Get PDF
    Control of transgene expression from long-term expression vectors can be achieved with inducible and regulated promoters. The two most commonly used inducible systems employ doxycycline or mifepristone as the drug activating a silent trans-activator, which is expressed from a constitutive promoter. We evaluated the alterations provoked by constitutive expression in the liver of rtTA2(S)-M2 (rtTA2; second-generation reverse tetracycline-controlled trans-activator) and GLp65, which are the trans-activators of the doxycyline- and mifepristone-inducible systems, respectively. To this end we performed transcriptomic analysis of mice expressing these trans-activators in the liver over 1 month. rtTA2 expression induced alterations in a few genes (69 gene probesets; false discovery rate [FDR], approximately 0.05), whereas GLp65 caused more numerous changes (1059 gene probe-sets, an FDR of approximately 0.05). However, only 20 and 53 of the genes from the rtTA2 and GLp65 groups, respectively, showed changes (R-fold >or= 3). Functional assignments indicate that alterations were mild and of little general significance. Few additional transcriptomic changes were observed when expressing trans-activators in the presence of inducer drugs; most were due to the drugs themselves. These results and the absence of toxicity observed in treated animals indicate that the two inducible systems are well tolerated and have little impact on the liver transcriptome profile. The milder alterations found with the use of rtTA2 suggest that this system is possibly safer for gene therapy application

    Deciphering Master Gene Regulators and Associated Networks of Human Mesenchymal Stromal Cells.

    Get PDF
    Mesenchymal Stromal Cells (MSC) are multipotent cells characterized by self-renewal, multilineage differentiation, and immunomodulatory properties. To obtain a gene regulatory profile of human MSCs, we generated a compendium of more than two hundred cell samples with genome-wide expression data, including a homogeneous set of 93 samples of five related primary cell types: bone marrow mesenchymal stem cells (BM-MSC), hematopoietic stem cells (HSC), lymphocytes (LYM), fibroblasts (FIB), and osteoblasts (OSTB). All these samples were integrated to generate a regulatory gene network using the algorithm ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks; based on mutual information), that finds regulons (groups of target genes regulated by transcription factors) and regulators (i.e., transcription factors, TFs). Furtherly, the algorithm VIPER (Algorithm for Virtual Inference of Protein-activity by Enriched Regulon analysis) was used to inference protein activity and to identify the most significant TF regulators, which control the expression profile of the studied cells. Applying these algorithms, a footprint of candidate master regulators of BM-MSCs was defined, including the genes EPAS1, NFE2L1, SNAI2, STAB2, TEAD1, and TULP3, that presented consistent upregulation and hypomethylation in BM-MSCs. These TFs regulate the activation of the genes in the bone marrow MSC lineage and are involved in development, morphogenesis, cell differentiation, regulation of cell adhesion, and cell structure

    Genome-wide profiling of methylation identifies novel targets with aberrant hyper-methylation and reduced expression in low-risk myelodysplastic syndromes

    Get PDF
    Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. © 2013 Macmillan Publishers Limited All rights reserved

    JAMI: a Java library for molecular interactions and data interoperability.

    Get PDF
    BACKGROUND: A number of different molecular interactions data download formats now exist, designed to allow access to these valuable data by diverse user groups. These formats include the PSI-XML and MITAB standard interchange formats developed by Molecular Interaction workgroup of the HUPO-PSI in addition to other, use-specific downloads produced by other resources. The onus is currently on the user to ensure that a piece of software is capable of read/writing all necessary versions of each format. This problem may increase, as data providers strive to meet ever more sophisticated user demands and data types. RESULTS: A collaboration between EMBL-EBI and the University of Cambridge has produced JAMI, a single library to unify standard molecular interaction data formats such as PSI-MI XML and PSI-MITAB. The JAMI free, open-source library enables the development of molecular interaction computational tools and pipelines without the need to produce different versions of software to read different versions of the data formats. CONCLUSION: Software and tools developed on top of the JAMI framework are able to integrate and support both PSI-MI XML and PSI-MITAB. The use of JAMI avoids the requirement to chain conversions between formats in order to reach a desired output format and prevents code and unit test duplication as the code becomes more modular. JAMI's model interfaces are abstracted from the underlying format, hiding the complexity and requirements of each data format from developers using JAMI as a library

    The small molecule luteolin inhibits N-acetyl-a-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein

    Get PDF
    Mucin-type O-glycosylation is the most abundant type of O-glycosylation. It is initiated by the members of the polypeptide N-acetyl-a-galactosaminyltransferase (ppGalNAc-T) family and closely associated with both physiological and pathological conditions, such as coronary artery disease or Alzheimer''s disease. The lack of direct and selective inhibitors of ppGalNAc-Ts has largely impeded research progress in understanding the molecular events in mucin-type O-glycosylation. Here, we report that a small molecule, the plant flavonoid luteolin, selectively inhibits ppGalNAc-Ts in vitro and in cells. We found that luteolin inhibits ppGalNAc-T2 in a peptide/protein-competitive manner but not promiscuously (e.g. via aggregation-based activity). X-ray structural analysis revealed that luteolin binds to the PXP motif-binding site found in most protein substrates, which was further validated by comparing the interactions of luteolin with wild-type enzyme and with mutants using 1H NMR-based binding experiments. Functional studies disclosed that luteolin at least partially reduced production of ß-amyloid protein by selectively inhibiting the activity of ppGalNAc-T isoforms. In conclusion, our study provides key structural and functional details on luteolin inhibiting ppGalNAc-T activity, opening up the way for further optimization of more potent and specific ppGalNAc-T inhibitors. Moreover, our findings may inform future investigations into site-specific O-GalNAc glycosylation and into the molecular mechanism of luteolin-mediated ppGalNAc-T inhibition

    Profiling of chemonaive osteosarcoma and paired-normal cells identifies EBF2 as a mediator of osteoprotegerin inhibition to tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis

    Get PDF
    Osteosarcoma is the most prevalent bone tumor in children and adolescents. At present, the mechanisms of initiation, maintenance, and metastasis are poorly understood. The purpose of this study was to identify relevant molecular targets in the pathogenesis of osteosarcoma. EXPERIMENTAL DESIGN: Tumor chemonaive osteoblastic populations and paired control normal osteoblasts were isolated and characterized phenotypically from seven osteosarcoma patients. Global transcriptomic profiling was analyzed by robust microarray analysis. Candidate genes were confirmed by real-time PCR and organized in molecular pathways. EBF2 and osteoprotegerin (OPG) levels were determined by real-time PCR and OPG protein levels were assessed by ELISA. Immunohistochemical analysis was done in a panel of 46 osteosarcoma samples. Silencing of EBF2 was achieved by lentiviral transduction of short hairpin RNA. Apoptosis was determined by caspase-3/7 activity. RESULTS: A robust clustered transcriptomic signature was obtained in osteosarcoma. Transcription factor EBF2, a known functional bone regulator, was among the most significantly overexpressed genes. Immunohistochemical analysis showed that osteosarcoma is expressed in approximately 70% of tumors analyzed. Because EBF2 was shown previously to act as a transcriptional activator of OPG, elevated levels of EBF2 were associated with high OPG protein levels in osteosarcoma samples compared with normal osteoblastic cells. Knockdown of EBF2 led to stunted abrogation of OPG levels and increased sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. CONCLUSIONS: These findings suggest that EBF2 represents a novel marker of osteosarcoma. EBF2 up-regulation may be one of the mechanisms involved in the high levels of OPG in osteosarcoma, contributing to decrease TRAIL-induced apoptosis and leading to TRAIL resistance

    The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein

    Get PDF
    Mucin-type O-glycosylation is the most abundant type of O-glycosylation. It is initiated by the members of the polypeptide N-acetyl-α-galactosaminyltransferase (ppGalNAc-T) family and closely associated with both physiological and pathological conditions, such as coronary artery disease or Alzheimer's disease. The lack of direct and selective inhibitors of ppGalNAc-Ts has largely impeded research progress in understanding the molecular events in mucin-type O-glycosylation. Here, we report that a small molecule, the plant flavonoid luteolin, selectively inhibits ppGalNAc-Ts in vitro and in cells. We found that luteolin inhibits ppGalNAc-T2 in a peptide/protein-competitive manner but not promiscuously (e.g. via aggregation-based activity). X-ray structural analysis revealed that luteolin binds to the PXP motif-binding site found in most protein substrates, which was further validated by comparing the interactions of luteolin with wild-type enzyme and with mutants using 1H NMR-based binding experiments. Functional studies disclosed that luteolin at least partially reduced production of β-amyloid protein by selectively inhibiting the activity of ppGalNAc-T isoforms. In conclusion, our study provides key structural and functional details on luteolin inhibiting ppGalNAc-T activity, opening up the way for further optimization of more potent and specific ppGalNAc-T inhibitors. Moreover, our findings may inform future investigations into site-specific O-GalNAc glycosylation and into the molecular mechanism of luteolin-mediated ppGalNAc-T inhibition.This work was supported by the National Basic Research Program of China Grants 2012CB822103 and 2011CB910603 (to Y. Z.); National High Technology Research and Development Program of China Grant 2012AA020203 (to Y. Z.); National Natural Science Foundation Grants 31170771 (to Y. Z.), 31370806 (to Y. Z.), and 31570796 (to Y. Z.); National Basic Research Program of China Grant 2012CB822103 (to F. W.); National Natural Science Foundation Grants 31270853 and 81102377 (to F. W.); Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Ministerio de Economía y Competitividad, Grants CTQ2013-44367-C2-2-P and BFU2016-75633-P (to R. H.-G.); Diputación General de Aragón (DGA) Grant B89 (to R. H.-G.); and the EU Seventh Framework Programme (2007–2013) under BioStruct-X (Grant Agreement 283570 and BIOSTRUCTX 5186) (to R. H.-G.).Peer Reviewe

    Cortactin (CTTN) overexpression in osteosarcoma correlates with advanced stage and reduced survival

    Get PDF
    The cortactin (CTTN) gene has been found, by transcriptomic profiling, to be overexpressed in pediatric osteosarcoma. The location of CTTN at 11q13 and the role of cortactin in cytoskeleton restructuring make CTTN of interest as a potential biomarker for osteosarcoma. MATERIALS AND METHODS: Osteoblasts were isolated from 20 high-grade osteosarcomas before chemotherapy, and paired with cell samples from normal tissue, prior to RNA expression analysis on HG-U133A chips (Affymetrix). Semiquantitative CTTN mRNA expression was analyzed by real-time PCR. An osteosarcoma tissue microarray (TMA) containing 233 tissue spots from 48 patients was used for an immunohistochemical (IHC) study of cortactin. RESULTS: Transcriptomic profiling and real-time PCR analysis indicated increased CTTN expression in osteosarcomas (p = 0.001, Student's T test). TMA IHC showed cortactin to be present more frequently and in greater abundance in osteosarcomas than non-tumoral osteoblastic samples (p< 0.006, Mann-Withney test). Analysis of clinical outcomes indicated that overall survival for patients with primary tumors positive for cortactin was significantly lower than that for patients with cortactin negative (or only weakly staining) tumors (p = 0.0278, Log-rank test). CONCLUSIONS: Our preliminary data support the hypothesis that over-expression of cortactin, contained in the 11q13 amplicon, is involved in osteosarcoma carcinogenesis. The potential of cortactin overexpression as a biomarker for osteosarcoma is consolidated
    • …
    corecore