14,425 research outputs found

    N′-(2-Fluoro­benzyl­idene)acetohydrazide

    Get PDF
    The title compound, C9H9FN2O, was prepared by the reaction between 2-fluoro­benzophenone and acetohydrazide. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur, generating R 2 2(8) loops

    Accelerating polygon beam with peculiar features

    Get PDF
    We report on a novel kind of accelerating beams that follow parabolic paths in free space. In fact, this accelerating peculiar polygon beam (APPB) is induced by the spectral phase symmetrization of the regular polygon beam (RPB) with five intensity beam (RPB) with five intensity peaks, and it preserves a peculiar symmetric structure during propagation. Specially, such beam not only exhibits autofocusing property, but also possesses two types of accelerating intensity maxima, i.e., the cusp and spot-point structure, which does not exist in the previously reported accelerating beams. We also provide a detailed insight into the theoretical origin and characteristics of this spatially accelerating beam through catastrophe theory. Moreover, an experimental scheme based on a digital micromirror device (DMD) with the binary spectral hologram is proposed to generate the target beam by precise modulation, and a longitudinal needle-like focus is observed around the focal region. The experimental results confirm the peculiar features presented in the theoretical findings. Further, the APPB is verified to exhibit self-healing property during propagation with either obstructed cusp or spot intensity maxima point reconstructing after a certain distance. Hence, we believe that the APPB will facilitate the applications in the areas of particle manipulation, material processing and optofludics

    Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Get PDF
    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.Fil: Zhao Xiang, Fang. University of Science and Technology of China; ChinaFil: Yu Xuan, Ren. Shanghai Institutes for Biological Sciences; ChinaFil: Gong, Lei. University of Science and Technology of China; ChinaFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Chen, Yue. University of Science and Technology of China; ChinaFil: Rong De, Lu. University of Science and Technology of China; Chin

    An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor

    Get PDF
    Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images

    {5,10,15,20-Tetra­kis[4-(hex­yloxy)phen­yl]porphyrinato}nickel(II)

    Get PDF
    The mol­ecule of the title compound, [Ni(C68H76N4O4)], is located on a crystallographic inversion center. The Ni—N distances within the square-shaped coordination environment are 1.951 (2) and 1.954 (2) Å. Three terminal C atoms in one of the hexyl groups are disordered over two sets of sites, with site-occupancy factors of 0.615 (13) and 0.385 (13)
    corecore