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An Arginine Finger Regulates the Sequential Action of Asymmetrical
Hexameric ATPase in the Double-Stranded DNA Translocation Motor

Zhengyi Zhao,a,b Gian Marco De-Donatis,b Chad Schwartz,b Huaming Fang,b Jingyuan Li,c Peixuan Guoa,b

Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, and Department of Physiology and Cell Biology, College of Medicine, The Ohio State
University, Columbus, Oho, USAa; College of Pharmacy, University of Kentucky, Lexington, Kentucky, USAb; Institute of High Energy Physics, Chinese Academy of Sciences,
Beijing, Chinac

Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion
is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacterio-
phage �29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent
dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydroly-
sis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that
can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase
was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition
of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. More-
over, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity.
Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase sub-
unit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is sup-
ported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer
subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of �29 was previously reported as a penta-
meric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase
subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that
acquires the average of many images.

The ASCE (additional strand catalytic E) superfamily, includ-
ing the AAA� (ATPases associated with various cellular

activities) superfamily, is a broad class of proteins among
which are several nano-biological molecular motors, or nano-
motors. Nanomotors facilitate a wide range of functions (1–5),
many of which are involved in DNA replication, repair, recom-
bination, chromosome segregation, protein degradation,
membrane fusion, microtubule severing, peroxisome biogene-
sis, gene regulation, DNA/RNA transportation, bacterial divi-
sion, and many other processes (6–10).

Despite their functional diversity, ring-shaped P-loop NTPases
share two conserved modules with Walker A and Walker B motifs
(11), exerting their activity through the ATP-dependent remod-
eling for translocation of macromolecules. The Walker A motif is
responsible for ATP binding, while the Walker B is responsible for
ATP hydrolysis (12, 13). This energy transition can result in either
a gain or loss of substrate affinity, therefore generating a mechan-
ical force exerted on the substrate to produce a mechanical mo-
tion. This motion will lead to a contact with or a separation from
the substrate molecule, resulting in molecule folding/unfolding,
complex assembly/disassembly, or translocation of DNA, RNA,
protein, or other substrates (2–4, 14).

Both the revolving mechanism and the sequential reaction
mechanism adapted by biological systems through evolution are
efficient methods of unidirectional translocation of lengthy dou-
ble-stranded DNA (dsDNA) genomes, with minimum consump-
tion of energy and without tangling or coiling (15–19). However,
both the revolving mechanism and/or the sequential reaction
mechanism for DNA translocation require signal communication
from one component to another in the motor complex. It has been

reported that ASCE ATPases contain one arginine finger motif
along with the Walker A and Walker B motifs (20–30). In the
active ATPase ring, the arginine residue is located in proximity to
the gamma-phosphate of the bound ATP in the adjacent ATPase
subunit (22, 25–27). An arginine finger has been confirmed to
associate with the formation of the ATP binding pocket (24, 27–
30). To understand how the motor component coordinates its
motion necessary for unidirectional DNA translocation activity
and sequential action of the ATPase ring, we analyzed the role of
the arginine finger motif in the ATPase core of the dsDNA trans-
location motor. It was found that this motif controls the forma-
tion of the coordinating dimer inside the hexamer of the motor
ATPase. The dimer, however, is not static but shifts and alters with
time in a sequential manner, and this sequential reaction mecha-
nism is regulated by the arginine finger.

MATERIALS AND METHODS
Cloning, mutagenesis, and protein purification. The engineering of en-
hanced green fluorescent protein (eGFP)-gp16 and the purification of the
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gp16 fusion protein have been reported previously (31). Construction of
eGFP-gp16 mutants, including arginine finger mutant R146A, Walker A
mutant G27D, and Walker B mutant E119A as well as mCherry-gp16
mutant R146A was accomplished by introducing mutations in the gp16
gene by Keyclone Technologies.

Glycerol gradient ultracentrifugation. Fifty microliters of eGFP-
gp16 (500 �g/ml) was dropped on the top of 5 ml of linear 15 to 35%
glycerol gradients in TMS buffer (50 mM Tris-HCl, pH 8.0, 100 mM
NaCl, 10 mM MgCl2). After centrifugation at 35,000 rpm in an SW55
rotor at 4°C for 22 h, the gradients were collected into 31 fractions from
bottom to top and measured using a plate reader under 488-nm excitation
before being applied to an in vitro assembly assay.

EMSA. A fluorescently tagged protein that facilitates detection and
purification was shown to possess assembly and packaging activities sim-
ilar to those of the wild type (31, 32). The electrophoretic mobility shift
assay (EMSA) has been described previously (16, 17). The gp16 mutants
or the wild type were mixed with 33 bp of Cy5-dsDNA in the presence or
absence of ATP and �-S-ATP. Samples were incubated at ambient tem-
perature for 20 min and then loaded onto a 1% agarose gel (44.5 mM Tris,
44.5 mM boric acid) and electrophoresed at 4°C for around 1 h at 8 V/cm.
The eGFP-gp16, mCherry-gp16, and Cy5-DNA samples were analyzed by
a fluorescent LightTools whole-body imager using 488-nm, 540-nm, and
635-nm excitation wavelengths for GFP, mCherry, and Cy5, respectively.

Protein structure prediction and analysis. I-TASSER (33) was used
to predict the structure of the subunit of gp16 through a threading algo-
rithm. The structure prediction processed without restraint, allowing the
server to select the template. The N domain (amino acids [aa]1 to 180) of
the predicted structure adopts a RecA-like fold, which is the conserved
structure for many oligomeric ATPases, including T7 gp4 and FtsK. The
root mean square deviation (RMSD) between the predicted structure (N
domain of gp16) and FtsK (beta domain) after the structure alignment is
around 3 Å. The predicted structure (monomer) was used to construct a
hexameric structure of gp16 with Pseudomonas aeruginosa FtsK (Protein
Data Bank [PDB] accession number 2IUU) as the template (34). VMD
was used to render the image of the structure (35).

Proteinase probing assay. Three microliters of His-gp16 (2 mg/ml)
was mixed with trypsin (0.5 �g) and different amounts of ATP (0 nmol, 16
nmol, 32 nmol, 64 nmol, 128 nmol, 256 nmol, 512 nmol, and 1 �mol) in
the enzyme reaction buffer (50 mM NaCl, 25 mM Tris, pH 8, 0.01%
Tween 20, 0.1 mM MgCl2, 2% glycerol, 1.5% polyethylene glycol [PEG]
8000, 0.5% acetone, and 5 mM dithiothreitol [DTT]). Fresh DTT was

added to the buffer right before the reaction. The final volume for this
reaction system was 30 �l; the samples were incubated at room tempera-
ture for 30 min and applied on 12% SDS-PAGE gels.

Intrinsic tryptophan fluorescence assay. Eight microliters of SUMO-
gp16 (1 �g/�l) was incubated with different amounts of ATP in the reac-
tion buffer (0.005% Tween 20, 1.5% PEG 8000, 0.5% acetone, and 2 mM
Tris, pH 8.0). The fluorescence intensity of the samples was immediately
measured through a spectrofluorometer at a wavelength excitation of 280
nm.

ATPase activity assay. Enzymatic activity via fluorescent labeling was
described previously (36). Briefly, a phosphate binding protein conju-
gated to a fluorescent probe that senses the binding of phosphate was used
to assay ATP hydrolysis.

In vitro assembly inhibition assay. Purified in vitro components were
mixed and were subjected to a virion assembly assay as previously de-
scribed (37). Briefly, newly assembled infectious virions were inoculated
to Bacillus bacteria and plated. Activity is expressed as the number of
plaques formed per volume of sample (PFU/milliliter).

RESULTS
Hypothesis of motor motion mechanism to be tested. Most bio-
logical motor ATPases assemble into hexameric rings with a mo-
tion process stimulated by ATP (11). For the �29 dsDNA translo-
cation motor, our hypothesis is the following: (i) an arginine
finger is present in the �29 motor ATPase gp16; (ii) the arginine
finger extends to the upstream adjacent ATPase subunit to serve as
a bridge for the formation of a dimeric subcomplex and regulates
the sequential action of the subunits in the hexameric ATPase
ring; (iii) one ATPase dimer and four monomers are present in the
hexameric ring; (iv) ATP binding results in the reshaping of the
conformation and change of the entropic landscape of gp16; and
(v) due to DNA-dependent ATPase activity (11), binding of
DNA to the ATP/gp16 complex resulted in ATP hydrolysis, lead-
ing to a second conformational change and further entropy alter-
nation of the ATPase to a low-DNA-affinity configuration that
allows the release of dsDNA for its concomitant transfer to the
adjacent subunit.

The model assumes that ATPase undergoes a series of confor-
mational changes during ATP/DNA binding and ATP hydrolysis

FIG 1 The proposed mechanism of ATPase coordination with a series of conformational changes during DNA binding and ATP hydrolysis that are regulated
by the arginine finger (Rf, red).
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that are organized in a sequential manner and that this sequential
mechanism is coordinated by the arginine finger (Fig. 1), in accor-
dance with the supporting data described below.

Identification of arginine finger motifs in �29 gp16 ATPase.
gp16 shares the common ATP binding domain typical of all ASCE
family members, including AAA� proteins (2, 38). This domain
contains very well conserved motifs responsible for ATP binding
and ATP hydrolysis (12), which have been previously identified
as Walker A (11) and Walker B motifs (17), respectively. How-
ever, detailed information about the arginine finger motif of
�29 has remained elusive. Sequence alignment was subse-
quently performed with similar ASCE family proteins to iden-

tify this motif (Fig. 2A). From the alignment, we identified the
position of the arginine fingers (residue 146) localized after the
position of the beta-4 strand, as seen in other ATPases, which
correlates well with the known structural information and con-
sensus sequences for this motif found in other proteins (27, 34,
39–41) (Fig. 2A). The single mutant R146A gp16 was produced
and examined for its ATPase activity. As expected, the arginine
finger mutant was severely impaired in both ATP hydrolysis
activity (Fig. 2B) and DNA binding in the presence of �-S-ATP
(Fig. 2C), possibly due to the impaired affinity for �-S-ATP,
which is similar to that of the Walker A mutant (17). In con-
trast, the Walker B mutants retained their binding affinity for

FIG 2 Identification and characterization of the arginine finger in the �29 gp16 ATPase. (A) Sequence alignment among gp16 ATPase and other ATPases in the
same family, indicating the location of the Walker A, Walker B, and arginine finger (R) motifs of gp16 ATPase, which are well aligned with previously established
domains (11, 27, 34, 39–41). h, hydrophobic residue. (B and C) ATP binding and hydrolysis activity assay of the gp16 arginine mutant. After the R146 residue is
mutated, gp16 ATPase loses its ATP hydrolysis activity (B) and DNA binding activity, as shown by EMSA (C). wt, wild type.
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DNA in the presence of �-S-ATP and were also sufficient in
binding DNA in the presence of ATP, although they could not
hydrolyze ATP (16, 17).

The arginine finger extends to the upstream adjacent ATPase
subunit to serve as a bridge for the formation of a dimeric sub-
complex and regulates the sequential action of the subunits in
the hexameric ATPase ring. The arginine finger has been re-
ported to have various functions, including a major role in sub-
unit communications by pivoting upon ATP hydrolysis to trigger
the conformational changes of the subunits of ATPase (23, 42–
46). The formation of the dimeric complex of gp16 in the absence
of ATP was demonstrated by different approaches: glycerol gradi-
ent ultracentrifugation (Fig. 3), electrophoretic mobility shift as-
say (EMSA) (Fig. 4A to C), size exclusion chromatography, and
native gel electrophoresis (17). These assays were based on the
previous finding that fusion of the GFP protein to the N terminus
of gp16 did not interfere with activity of the ATPase gp16 in DNA
packaging (31, 47, 48). It was found that mutation of the arginine
finger abolished dimer formation within the ATPase (Fig. 3). Al-
though the arginine mutants alone could not form dimers, inter-
actions were observed when the arginine mutants were mixed
with either the wild type or mutants that contained an intact ar-

ginine finger, which can provide an arginine residue for dimer
formation (Fig. 3). The disruptive effect of the arginine finger
mutation on assembly ability was also reflected in protein activity
since it was observed that one single inactive subunit of an argi-
nine finger mutant was able to completely inactivate the whole
ATPase ring in an assembly inhibition assay (Fig. 4D and E). This
supports the idea that in the ATPase ring, one adjacent wild-type
ATPase provided an arginine finger to interact with the arginine
mutant and that the lack of one arginine in the entire ring com-
pletely abolished the activity of the whole ring.

To get a better understanding of the structural role of the argi-
nine finger, we modeled a gp16 hexameric ring using I-TASSER
(33) and Phyre2 software (81). The gp16 sequence aligned well
with the crystal structure of the hexameric FtsK DNA translocase
of Escherichia coli (Fig. 5). Using this model, we observed that the
position of the arginine finger of one subunit of gp16 extends to
the active site of a neighboring subunit. The predicted structure
showed that the arginine finger was part of the ATP binding pocket
(Fig. 5). The structural model provides an explanation for the ob-
served cooperative behavior in the hexameric ring of gp16. Not sur-
prisingly given the importance in the formation of the active site,
mutations in arginine fingers greatly impaired the ability of gp16 to

FIG 3 Ultracentrifugation assay showing the presence of both dimers and monomers in gp16 ATPase rings. (A and B) One peak of eGFP-gp16 R146A (A) and
two peaks of eGFP-gp16 wild type (B) were shown after parallel ultracentrifugation in a 15% to 35% glycerol gradient, indicating that both monomers and dimers
were formed in the gp16 wild type, while dimer formation is interrupted by the mutation of the arginine finger. (C) The isolated gp16 dimers did not show any
viral assembly activity, supporting the previous finding that addition of fresh gp16 monomers is required for reinitiating the DNA packaging intermediates. (D
to F) Ultracentrifugation fractions (Fr) of protein markers, including BSA (66 kDa), alcohol dehydrogenase (140 kDa), and beta-amylase (200 kDa), are shown,
with their peak locations around fractions 23, 18, and 15, respectively, to mark the separation of the monomer and dimer of gp16 ATPase. w/, with; w/o, without.
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bind to ATP, to hydrolyze ATP (Fig. 2B), to bind to DNA (Fig. 2C),
and consequently to package the DNA (Fig. 4E).

Both dimer and monomer forms were present in gp16 hex-
amer. As demonstrated in the above sections, the arginine finger

serves as a bridge between two independent subunits, thus form-
ing a transient dimeric subunit. In wild-type gp16, it was observed
that both dimer and monomer forms were present in solution, as
revealed by glycerol gradient centrifugation experiments. The mo-

FIG 4 Intersubunit interaction of gp16 arginine mutant with other gp16s. (A to C) EMSAs showing the interaction of the gp16 arginine finger mutant with
wild-type gp16 (A), the gp16 Walker A mutant (B), and the arginine finger mutant (C). Interactions between the gp16 arginine finger mutant and wild-type gp16
or the gp16 Walker A mutant are demonstrated by the band shift of both ATPase and DNA in the gel, while no obvious band shifts were observed when the
arginine finger mutant ATPases were mixed together. DNA was labeled with Cy5, and different ATPases were labeled with different fluorescent protein tags for
observation in the gel. (D and E) Binomial distribution assay to show the blockage of the ATPase arginine finger mutant on motor packaging activity. Different
ratios of buffer (D) or eGFP-gp16 arginine finger mutants (E) were mixed with wild-type gp16 ATPase for the in vitro virion assembly activity assay. The
experimental curve is plotted with theoretical predictions made according to the equation of Fang et al. (59) The experimental curve matches with the theoretical
prediction with z � 6, indicating that six subunits are present in the ATPase ring, and one arginine finger mutant is enough to block the activity of the motor (see
Materials and Methods).

FIG 5 Prediction and comparison of gp16 structure. (A) Structural comparison between the crystal structure of FtsK monomer (PDB accession number 2IUU;
cyan) and the gp16 ATPase model (pink). The arginine finger is highlighted as a sphere. (B) Comparison of the predicted gp16 hexamer and FtsK hexamer. The
ATPase gp16 hexamer structure was constructed using the predicted monomer structure shown in panel A and the P. aeruginosa FtsK (PDB accession number
2IUU) as templates (34). VMD was used to render the image of the structure (35). The ATP domains are highlighted as spheres: residue 27 (green, the conserved
Walker ATP domain) and residue 146 (red, the arginine finger). The interaction of the arginine finger with the upstream adjacent subunit is evidenced by the
proximity of the red and green spheres in both the constructed structure of the gp16 hexamer and the FtsK hexamer crystal structure.
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lecular masses relative to such fractions were confirmed by protein
marker calibrations in the same assay (the 66-kDa bovine serum
albumin [BSA] localized around fraction 23, the 140-kDa alcohol
dehydrogenase localized around fraction 18, and the 200-kDa be-
ta-amylase localized at around fraction 15). We thus proceeded to
test the packaging activity of the different fractions of the gp16
ATPase recovered from the gradient. Interestingly, it has been
observed that DNA packaging activity was retained with the frac-
tions containing monomers, while fractions containing only
dimers displayed no DNA packaging activity (Fig. 3C). These re-
sults agree with the finding that the addition of fresh gp16 mono-
mer to the DNA packaging intermediates is required for reinitiat-
ing motor DNA packaging activity and the conversion of the
intermediates into infectious viruses (49).

ATP binding resulted in the change of conformation and en-
tropic landscape of gp16. ASCE family proteins undergo a cycle of
conformational changes during ATP binding and hydrolysis with
basically two major states: high or low affinity for the DNA sub-
strate. In recent publications (16, 17, 32, 50), we proposed a sim-
ilar model for gp16, in which binding to ATP exerted an effect on
the conformational state of the protein that predisposed it to bind-
ing to DNA (high affinity). Conversely, ADP would promote an-
other conformational state in which DNA binding is not favor-
able. This notion, together with the observation that the arginine

finger has a role in regulating both the conformational state of
gp16 and its interaction with the adjacent subunit, prompted us to
question whether the effect of ATP binding on gp16 was able to
modify not only the conformation of the DNA binding portion of
the protein but also the structural characteristics of gp16 alto-
gether. We thus tested if ATP binding was able to alter the shape of
gp16 by partial proteolysis treatment and by intrinsic tryptophan
fluorescence assay (Fig. 6A and B). Interestingly, both assays indi-
cated a conformational change in the gp16-ATP complex. More-
over, as visible from the partial proteolysis test, protection from
proteolysis is indicative of a larger population of gp16 with a con-
strained conformation before ATP binding.

An electrophoretic mobility shift assay was also employed to
study the interaction between ATPase and dsDNA in the presence
of �-S-ATP, a nonhydrolysable ATP analog. Stronger binding of
gp16 to dsDNA was observed when gp16 was incubated with �-S-
ATP (Fig. 6C), suggesting that the gp16/dsDNA complex is stabi-
lized through addition of the nonhydrolysable ATP substrate.

Hydrolysis of ATP transformed the ATPase into a second
conformation with low affinity for dsDNA, thus pushing the
dsDNA toward an adjacent ATPase subunit. Consequent to the
first structural change, it was also observed that the binding of
the ATP/gp16 complex to DNA resulted in ATP hydrolysis and
also the passage to a second conformational change with a low-

FIG 6 Demonstration of two separate steps of gp16 conformational changes and entropic landscape alteration after ATP binding and ATP hydrolysis,
respectively. (A) Trypsin probing showed that the ATPase-digested band is decreased with a reduced amount of ATP added into gp16 ATPase samples, suggesting
that the gp16 ATPase is less constrained after binding to ATP. (B) Intrinsic tryptophan fluorescence assay showing the signal changes of ATPase upon the addition
of different concentrations of ATP. (C) EMSA showing that gp16 ATPase bound to ATP and undergoes a conformational change that has a high affinity for DNA
and that ATP hydrolysis triggers a second conformational change of gp16 ATPase with a low affinity with DNA. (D) Increasing DNA is released from gp16
ATPase/DNA/ATP complex upon the addition of increased amount of ATP that can be hydrolyzed by the gp16 ATPase.
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DNA-affinity configuration (11, 16, 36, 51). This explains the
finding in 1987 that the �29 DNA packaging protein gp16 is a
DNA-dependent ATPase (11). Such a state resulted in the release
of dsDNA for its concomitant transfer to the adjacent subunit.
The conclusion was also supported by the finding that the addi-
tion of normal ATP promoted the release of dsDNA from the
gp16 –�-S-ATP– dsDNA complex (Fig. 6D).

DISCUSSION

�29 genomic DNA packaging involves multiple components, in-
cluding a 12-subunit connector, a hexameric prohead RNA
(pRNA) ring (52, 53), and an ASCE ATPase gp16 hexamer. Great
interest has arisen about this packaging system for its intriguing
mechanism of action and for its useful applications in nanotech-
nology (54–60). It has been demonstrated that pRNA works as a
point of connection between ATPase and the connector (61)
and that the hexameric ATPase (16, 17) provides the pushing
force for the packaging of genomic DNA, acting in coordina-
tion with the connector that acts as a one-way valve (50, 62, 63).

Nanobiomotors have been previously classified into two main
categories: linear and rotational motors. These two categories
have been clearly documented in single-molecule imaging and
X-ray crystallography (64–69). Recently, it has been discovered
that the �29 dsDNA packaging motor uses a revolving mechanism
that does not require rotation or coiling of the dsDNA (15–17, 70).
The discovery of a revolving mechanism establishes a third class of
biomotors. This finding resolves many puzzles and debates that
have arisen throughout the history of painstaking studies on the
motor (19, 70).

The ATPase hexameric ring exerts a force, pushing the dsDNA
in a sequential manner to advance through the dodecamer chan-
nel, which acts as a one-way valve as reported for the phi29 motor
(5, 19, 62, 70, 71). The interest in the sequential revolving mech-
anism lies in the fact that it elegantly integrates all the known
functional and structural information about the packaging core
(the ATPase, pRNA, and connector). Moreover, it offers solutions
for many questions that arise from investigations of the DNA

packaging phenomenon (i.e., coordination between energy con-
sumption and DNA packaging and the ability to translocate a long
strain of dsDNA without coiling or tangling). However, in order
to have a sequential mechanism (which has been proposed for
many proteins belonging to the AAA�/ASCE family) (30, 72, 73),
several conditions need to be fulfilled. The most important are the
following: (i) only one or two subunits of the oligomer are able to
bind the substrate with the same affinity exhibited in the entire
hexamer; (ii) both the ATPase activity and translocation activity
need to demonstrate negative cooperativity when one subunit is
able to bind ATP and is not able to hydrolyze the nucleotide (as in
the case of the Walker B mutation); (iii) only the ATP-bound state
of the protein is the unique state that efficiently binds to DNA.

We demonstrated that, indeed, this is the case for the �29
motor ATPase (16, 32). One important question that then arises
with the demonstration of the sequential mechanism is how the
different subunits of the ATPase can sense the ATP binding/DNA
binding state of others. In the present work, we addressed this
question by identifying the arginine finger motifs of the ATPase
gp16 by sequence alignment and proved that the arginine finger is
an essential motif that participates in the formation of the ATP
binding pocket by examining the behavior of gp16 mutants with
the arginine finger removed. The gp16 mutated in the arginine
finger was unable to package DNA, to hydrolyze ATP, or to bind to
DNA. The profile of gp16 in ultracentrifugation indicated the
presence of a mixture of monomeric and dimeric forms. Mutation
of the arginine finger eliminated the capacity of gp16 to assemble
into dimeric forms. Arginine finger motifs were thus shown to link
two subunits to each other since the arginine motif of one subunit
participates in the formation of the ATP binding site of the next
subunit (Fig. 7). The importance of the dimer, moreover, is evi-
dent, as shown by the DNA packaging assay, in which a reconsti-
tuted hexamer of gp16 can efficiently pack DNA inside the pro-
capsid only when ultracentrifuged fractions containing both dimeric
and monomeric gp16 are mixed together (data not shown)
(49).

In the sequential action of gp16, we proposed that one subunit

FIG 7 Asymmetrical structure of various ATPase hexamer models. Structure illustrations of V1-ATPase (adapted from reference 75 with permission of the
publisher), TRIP13 (adapted and modified from reference 76 with permission of the publisher), ClpX (adapted and modified from reference 77 with permission
of the publisher), MCM helicase (adapted from reference 79 with permission of the publisher), and F1-ATPase (80) are shown as representatives of asymmetrical
hexamers. PDB accession numbers are as follows: V1-ATPase, 3VR5; TRIP13, 4XGU; F1-ATPase, 1BMF; ClpX, 4I81. The EM reconstruction of the MCM
helicase is deposited in the EMDataBank under accession number EMD-5429.
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of the hexamer binds to the DNA, subsequently hydrolyzing ATP
to perform a translocation of a certain number of base pairs of
DNA (11, 74). The DNA is then passed to the subsequent subunit,
and the process is repeated. It is intriguing to notice that the po-
sition and function of ATPase offer the possibility of carrying the
information of ATP/DNA binding from one ATPase subunit to
another, with the cooperative behavior of gp16 seen in the case of
other mutants (Walker B mutations) (16).

The sequential action mechanism of the �29 ATPase is essen-
tial for optimal translocation efficiency. This mechanism inte-
grates well with our overall model of the revolving motor and a
“push through one-way valve” model (16, 50). Without coordi-
nation during the energy production of gp16, the cycles of binding
and release of DNA would create futile cycles of ATP hydrolysis,
inhibiting the unidirectional translocation process (15, 16, 32).
Arginine fingers thus act as integrators of information for the
entire process of DNA packaging. Years of evolution have created
an efficient biomotor, one that can be used in the future for appli-
cations in nanotechnology (54–60).

Furthermore, the conclusion that coordination is provided by
an asymmetrical hexamer was supported by structural computa-
tion, X-ray diffraction, and cryo-electron microscopy (cryo-EM)
imaging of other hexameric ATPase systems (Fig. 7) (71, 75–80).
These results could provide some clues as to why the asymmetrical
hexameric ATPase of gp16 of �29 and gp17 of T4 was previously
interpreted as a pentameric configuration by cryo-EM. Since the
two adjacent subunits of the ATPase could interact with each
other and form a closer dimer configuration, this dimer will ap-
pear as a monomeric subunit different from the others, and the
hexameric ring will be asymmetrical (Fig. 7).
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