101 research outputs found

    Characterization of Novel Cutaneous Human Papillomavirus Genotypes HPV-150 and HPV-151

    Get PDF
    DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient

    Characterization of a Novel Cutaneous Human Papillomavirus Genotype HPV-125

    Get PDF
    The DNA genome of a novel HPV genotype, HPV-125, isolated from a hand wart of an immuno-competent 19-year old male was fully cloned, sequenced and characterized. The full genome of HPV-125 is 7,809-bp in length with a GC content of 46.4%. By comparing the nucleotide sequence of the complete L1 gene, HPV-125 is phylogenetically placed within cutaneotrophic species 2 of Alphapapillomaviruses, and is most closely related to HPV-3 and HPV-28. HPV-125 has a typical genomic organization of Alphapapillomaviruses and contains genes coding for five early proteins, E6, E7, E1, E2 and E4 and two late capsid proteins, L1 and L2. The genome contains two non-coding regions: the first located between the L1 and E6 genes (nucleotide positions 7,137–7,809, length 673-bp) and the second between genes E2 and L2 (nucleotide positions 3,757–4,216, length 460-bp). The E6 protein of HPV-125 contains two regular zinc-binding domains at amino acid positions 29 and 102, whereas the E7 protein exhibits one such domain at position 50. HPV-125 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of HPV-125, a quantitative type-specific real-time PCR was developed. The 95% limit-of-detection of the assay was 2.5 copies per reaction (range 1.7–5.7) and the intra- and inter-assay coefficients of variation were 0.47 and 2.00 for 100 copies per reaction, and 1.15 and 2.15 for 10 copies per reaction, respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (a total of 601 samples) showed that HPV-125 is a relatively rare HPV genotype, with cutaneous tropism etiologically linked with sporadic cases of common warts

    Clinico-epidemiological profile and diagnostic procedures of pediatric tuberculosis in a tertiary care hospital of western Nepal-a case-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changing epidemiology and diagnostic difficulties of paediatric tuberculosis (TB) are being increasingly reported. Our aim was to describe clinico-epidemiological profile and diagnostic procedures used for paediatric TB.</p> <p>Methods</p> <p>A retrospective case-series analysis was carried out in a tertiary care teaching hospital of western Nepal. All pediatric TB (age 0-14 years) patients registered in DOTS clinic during the time period from March, 2003 to July, 2008 were included. Medical case files were reviewed for information on demography, clinical findings, investigations and final diagnosis. Analysis was done on SPSS package. Results were expressed as rates and proportions. Chi square test was used to test for statistical significance.</p> <p>Results</p> <p>About 17.2% (162/941) of TB patients were children. Common symptoms were cough, fever and lymph node swelling. The types of TB were <b/>pulmonary TB (46.3%, 75/162), followed by extra-pulmonary TB (41.4%, 67/162). Twelve patients (7.4%) had disseminated TB. Distribution of types of TB according to gender was similar. PTB was common in younger age than EPTB which was statistically significant. EPTB was mainly localized to lymph node (38, 50.7%), and abdomen (9, 12%). Five main investigations namely Mantoux test, BCG test, chest radiograph, erythrocyte sedimentation rate (ESR) and fine needle aspiration cytology (FNAC) or biopsy were carried out to diagnose TB.</p> <p>Conclusions</p> <p>Paediatric TB in both pulmonary and extrapulmonary forms is a common occurrence in our setting. Age incidence according to type of TB was significant. Diagnosis was based on a combination of epidemiological and clinical suspicion supported by results of various investigations.</p

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Molecular identification of papillomavirus in ducks

    Get PDF
    Papillomaviruses infect many vertebrates, including birds. Persistent infections by some strains can cause malignant proliferation of cells (i.e. cancer), though more typically infections cause benign tumours, or may be completely subclinical. Sometimes extensive, persistent tumours are recorded– notably in chaffinches and humans. In 2016, a novel papillomavirus genotype was characterized from a duck faecal microbiome, in Bhopal, India; the sixth papillomavirus genotype from birds. Prompted by this finding, we screened 160 cloacal swabs and 968 faecal samples collected from 299 ducks sampled at Ottenby Bird Observatory, Sweden in 2015, using a newly designed real-time PCR. Twenty one samples (1.9%) from six individuals (2%) were positive. Eighteen sequences were identical to the published genotype, duck papillomavirus 1. One additional novel genotype was recovered from three samples. Both genotypes were recovered from a wild strain domestic mallard that was infected for more than 60 days with each genotype. All positive individuals were adult (P = 0.004). Significantly more positive samples were detected from swabs than faecal samples (P < 0.0001). Sample type data suggests transmission may be via direct contact, and only infrequently, via the oral-faecal route. Infection in only adult birds supports the hypothesis that this virus is sexually transmitted, though more work is required to verify this.Thanks to duck trappers at Ottenby Bird Observatory for support and sample collection, and to Abbtesaim Jawad for DNA extraction. This work was supported by the Crafoord Foundation Sweden (grants number 20160971 and 20170671). This is contribution no. 306 from Ottenby Bird Observatory

    Human papillomavirus infection and use of oral contraceptives

    Get PDF
    Human papillomavirus (HPV) infection is thought to be a necessary but not sufficient cause of most cases of cervical cancer. Since oral contraceptive use for long durations is associated with an increased risk of cervical cancer, it is important to know whether HPV infection is more common in oral contraceptive users. We present a systematic review of 19 epidemiological studies of the risk of genital HPV infection and oral contraceptive use. There was no evidence for a strong positive or negative association between HPV positivity and ever use or long duration use of oral contraceptives. The limited data available, the presence of heterogeneity between studies and the possibility of bias and confounding mean, however, that these results must be interpreted cautiously. Further studies are needed to confirm these findings and to investigate possible relations between oral contraceptive use and the persistence and detectability of cervical HPV infection

    Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    Get PDF
    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions

    Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?

    Get PDF
    Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems

    Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    Get PDF
    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity
    corecore