4 research outputs found

    Intravenous iron for critically ill children. Comparison of three dose regimens

    No full text
    Background: Anemia is extremely common among patients admitted to pediatric intensive care. Alternative treatments to transfusions such as intravenous iron must be considered. There are no published data for a prospective intravenous (IV) iron study focused in the critically ill children. The objective is to examine the safety and efficacy of intravenous iron sucrose infusion to manage anemia in pediatric critical care. A secondary objective is to examine the effect of different dose regimens of iron sucrose (3, 5, and 7 mg/kg dose). Procedure: Prospective investigation of intravenous iron sucrose utilization at a tertiary pediatric intensive care unit between October 2017 and November 2022. Results: In all 115 patients received a total of 616 infusions of IV iron. Transferrin saturation index (TSI) was the most common altered iron deficiency biomarker (91.8%). After IV iron treatment, hemoglobin showed a significant increase within a 30-day follow-up (9.2 vs. 11.6 g/dL, p < .001). There was also a significant improvement in TSI and serum iron (p < .001). Iron deficit replacement was higher in the 7 mg/kg dose group (94%) compared to 85.9% in the 5 mg/kg regimen and 77.5% in the lower dose group (p = .008), requiring less doses and a shorter time. Very few mild adverse reactions were reported (1.3% of infusions), with no differences between groups. The most frequent adverse effect was gastrointestinal in three cases. There were no anaphylaxis-like or other serious/life-threatening adverse effects. Conclusions: This is the first study to evaluate intravenous iron therapy in pediatric critical care, providing preliminary evidence of safety and efficacy of IV iron sucrose. The 7 mg/kg dose regimen showed higher iron deficit replacement in a shorter time, which could be beneficial in critically ill children.Depto. de MedicinaFac. de MedicinaTRUEpu

    Volumetric capnography and return of spontaneous circulation in an experimental model of pediatric asphyxial cardiac arrest

    No full text
    Abstract A secondary analysis of a randomized study was performed to study the relationship between volumetric capnography (VCAP) and arterial CO2 partial pressure (PCO2) during cardiopulmonary resuscitation (CPR) and to analyze the ability of these parameters to predict the return of spontaneous circulation (ROSC) in a pediatric animal model of asphyxial cardiac arrest (CA). Asphyxial CA was induced by sedation, muscle relaxation and extubation. CPR was started 2 min after CA occurred. Airway management was performed with early endotracheal intubation or bag-mask ventilation, according to randomization group. CPR was continued until ROSC or 24 min of resuscitation. End-tidal carbon dioxide (EtCO2), CO2 production (VCO2), and EtCO2/VCO2/kg ratio were continuously recorded. Seventy-nine piglets were included, 26 (32.9%) of whom achieved ROSC. EtCO2 was the best predictor of ROSC (AUC 0.72, p < 0.01 and optimal cutoff point of 21.6 mmHg). No statistical differences were obtained regarding VCO2, VCO2/kg and EtCO2/VCO2/kg ratios. VCO2 and VCO2/kg showed an inverse correlation with PCO2, with a higher correlation coefficient as resuscitation progressed. EtCO2 also had an inverse correlation with PCO2 from minute 18 to 24 of resuscitation. Our findings suggest that EtCO2 is the best VCAP-derived parameter for predicting ROSC. EtCO2 and VCO2 showed an inverse correlation with PCO2. Therefore, these parameters are not adequate to measure ventilation during CPR
    corecore