38 research outputs found

    Carbenes as versatile tools in polymer chemistry

    Get PDF
    This thesis explores the various uses of carbenes and the roles they can fulfill in the materials transition by attacking different problems with different carbenes. In the era of sustainable chemistry and evolving regulations, academic and industrial research is largely driven by the imperative to replace hazardous chemicals and harsh reaction conditions with eco-friendlier intermediates and processes.We present a new isocyanate-free method to produce polyureas by Ru-catalyzed carbene insertion into the N–H bonds of urea itself in combination with a series of bis-diazo compounds as carbene precursors. This shows the possibility of using diazo compounds in combination with transition metal catalysis to furnish novel routes towards isocyanate-free polyureas. We present the development of carbene based crosslinkers that are shown to crosslink acrylic polymers through O–H insertion. The best crosslinker was shown to provide a hardness similar to the currently utilized melamine curing systems, and films with excellent water resistance. We show the development of a polyurethane based crosslinker that can be used to formulate a one-component polyurethane coating with material properties similar to isocyanate-based polyurethane coatings. This shows the usage of free carbenes as an alternative curing method for isocyanate-free polyurethanes.Overall, the findings acquired in the research presented in this thesis provide valuable insight into the role carbenes can fulfill in various places in materials chemistry. Thereby, the obtained knowledge opens up new avenues for the development of new catalysts, new monomers and new crosslinkers based on carbenes

    Cross-linking polyethylene through carbenes

    Get PDF

    Photoinduced Halogen-Atom Transfer by N-Heterocyclic Carbene-Ligated Boryl Radicals for C(sp<sup>3</sup>)-C(sp<sup>3</sup>) Bond Formation

    Get PDF
    Herein, we present a comprehensive study on the use of N-heterocyclic carbene (NHC)-ligated boryl radicals to enable C(sp3)–C(sp3) bond formation under visible-light irradiation via Halogen-Atom Transfer (XAT). The methodology relies on the use of an acridinium dye to generate the boron-centered radicals from the corresponding NHC-ligated boranes via single-electron transfer (SET) and deprotonation. These boryl radicals subsequently engage with alkyl halides in an XAT step, delivering the desired nucleophilic alkyl radicals. The present XAT strategy is very mild and accommodates a broad scope of alkyl halides, including medicinally relevant compounds and biologically active molecules. The key role of NHC-ligated boryl radicals in the operative reaction mechanism has been elucidated through a combination of experimental, spectroscopic, and computational studies. This methodology stands as a significant advancement in the chemistry of NHC-ligated boryl radicals, which had long been restricted to radical reductions, enabling C–C bond formation under visible-light photoredox conditions

    Pd<sub>12</sub>M<sub><i>n</i></sub>L<sub>24</sub> (for <i>n</i> = 6, 8, 12) nanospheres by post-assembly modification of Pd<sub>12</sub>L<sub>24</sub> spheres

    Get PDF
    In this contribution, we describe a post-assembly modification approach to selectively coordinate transition metals in Pd12L24 cuboctahedra. The herein reported approach involves the preparation of Pd12L24 nanospheres with protonated nitrogen donor ligands that are covalently linked at the interior. The so obtained Pd12(LH+)24 nanospheres are shown to be suitable for coordinative post-modification after deprotection by deprotonation. Selective formation of tetra-coordinated MB in Pd12MB6L24, tri-coordinated MB in Pd12MB8L24 nanospheres and two-coordinated MB in Pd12MB12L24 nanospheres is achieved as a result of different nitrogen donor ligands. A combination of pulsed EPR spectroscopy (DEER) to measure Cu-Cu distances in the different spheres, NMR studies and computational investigations, support the presence of the complexes at precise locations of the Pd12MB6L24 nanosphere. The general post-assembly modification methodology can be extended using other transition metal precursors or supramolecular systems and can guide precise formation and investigation of novel transition metal-complex containing nanospheres with well-defined composition.</p

    Homolytic C−H Bond Activation by Phosphine−Quinone-Based Radical Ion Pairs

    Get PDF
    Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅−, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) (8, oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.</p

    Homolytic C−H Bond Activation by Phosphine−Quinone-Based Radical Ion Pairs

    Get PDF
    Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅−, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) (8, oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.</p
    corecore