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ABSTRACT: Herein, we present a comprehensive study on the use of
N-heterocyclic carbene (NHC)-ligated boryl radicals to enable C(sp3)−
C(sp3) bond formation under visible-light irradiation via Halogen-Atom
Transfer (XAT). The methodology relies on the use of an acridinium
dye to generate the boron-centered radicals from the corresponding
NHC-ligated boranes via single-electron transfer (SET) and deproto-
nation. These boryl radicals subsequently engage with alkyl halides in an
XAT step, delivering the desired nucleophilic alkyl radicals. The present XAT strategy is very mild and accommodates a broad scope
of alkyl halides, including medicinally relevant compounds and biologically active molecules. The key role of NHC-ligated boryl
radicals in the operative reaction mechanism has been elucidated through a combination of experimental, spectroscopic, and
computational studies. This methodology stands as a significant advancement in the chemistry of NHC-ligated boryl radicals, which
had long been restricted to radical reductions, enabling C−C bond formation under visible-light photoredox conditions.

■ INTRODUCTION
The possibility to exploit photonic energy in organic synthetic
endeavors has dramatically impacted the way chemists
assemble molecules. In particular, photocatalysis has enabled
a convenient entry to open-shell intermediates,1 spurring the
development of efficient manifolds for the generation of C-,2

N-,3 and O-4 centered radicals, as well as halogen radicals,5

which can be subsequently used to forge new chemical bonds.6

In contrast, boron-based congeners have long remained in
obscurity,7 mainly due to the intrinsic difficulties associated
with the handling of these highly electron-deficient and
unstable intermediates. However, ligated boryl radicals
(LBRs),8 i.e. boron-centered radicals where the boron atom
is coordinated with a Lewis base, are more stable and provide a
suitable entry for use in radical chemistry (Figure 1A).9,10

In particular, N-heterocyclic carbene-based (NHC) boranes
are emerging as a convenient source of LBRs: NHC boranes
are stable crystalline compounds, and a diverse array of NHCs
can be ligated to boranes allowing the LBR properties to be
fine-tuned.11 Notably, these boranes can be uniquely paired
with photocatalysis to generate the targeted boron-centered
radicals.12 Herein, a photocatalyst absorbs visible light and
engages with the ligated borane in a single-electron transfer
step which, upon deprotonation, generates the corresponding
boryl radical. Although these boron-centered radicals have
attracted mainly interest from the synthetic community as
nucleophilic radicals,13,14 they have also been used in the role
of halogen-atom transfer (XAT) agents.
In the latter scenario, the halogen-affinity of the LBR is

exploited for the homolytic activation of a C−X bond to yield

carbon-centered radicals. However, this manifold has been so
far mainly used to reduce C−X bonds into the corresponding
C−H bonds via a radical chain mechanism.11,12,15 Surprisingly,
boryl radicals have been largely overlooked for the
construction of C−C bonds (Figure 1B). In an early example,
the radical silyldifluoromethylation of electron-deficient
alkenes was reported.16 Herein, a very specific interaction,
based on halogen-bonding between the substrate and an NHC
borane, was needed to trigger the desired C−X bond
photolysis and subsequently initiate the radical chain
mechanism sustained by the LBR (Figure 1C). Inspired by
this report, we questioned whether it would be possible to
realize a more general strategy to generate the pivotal ligated
boryl radical. Such a pathway might allow the engagement of a
broader array of substrates, ultimately leading to a general
approach for C−C bond formation. Moreover, succeeding in
this challenge would provide a cheap, tunable, and sustainable
alternative for other XAT-based approaches17 using silyl18 and
α-aminoalkyl radicals.19 To this end, we disclose our results
regarding the development of a mild and broadly applicable
protocol for C(sp3)−C(sp3) bond formation using photo-
induced XAT by NHC-ligated boryl radicals under blue-light
irradiation (Figure 1D). The key role of the NHC-ligated boryl
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radicals in the operative reaction mechanism has been
uncovered through a combination of experimental, spectro-
scopic, and computational studies.

■ RESULTS AND DISCUSSION
At the outset of our investigations, we recognized the
importance of finding the ideal combination of ligated borane
and photocatalyst to establish an efficient and competent
system to promote the desired reactivity. In detail, the
photocatalyst would absorb the visible light and subsequently
generate the LBR via a SET followed by deprotonation.12 The
resulting boryl radical would be ultimately entrusted with the
XAT step.
We immediately realized that the success of our plan hinges

on (i) the redox potentials of the borane and the photocatalyst
and (ii) the halogen-affinity of the resulting LBR. Based on
literature and our experimental data (see Section 11 in the
Supporting Information), we identified NHC-ligated borane
B1 as an ideal candidate for our purposes: in fact, its oxidation
potential (Epa(B1•+/B1)) is +0.89 V vs SCE,20 which suggests
that this approach should be feasible in combination with
routinely used photoredox catalysts. Other ligated boranes
tested (see Section 11 in the Supporting Information) were
found to have an exceedingly high redox potential, thus
preventing the formation of the desired ligated boryl radical.

Next, we started our investigation by screening different
photoredox catalysts that possess a higher excited state
reduction potential (E(PC*/PCred)) than that of B1 (Table
1). Our experiments revealed that, when a degassed CH3CN

solution of 2a (0.1 M), 1a (2 equiv), and B1 (1 equiv) was
irradiated with blue light (λ = 456 nm, 12 h, rt) in the presence
of 2 mol % of the organic photocatalysts PC1 or PC2, product
3 could be obtained in 43−44% GC yield (Table 1, entries 1
and 2). In contrast, Ru(bpy)3(PF6)2 (PC3) gave worse results
(Table 1, entry 3).
Next, we screened the effect of the solvent on the

transformation and noticed that protic reaction mixtures
boosted the reaction yield (Table 1, entry 4: up to 68% in
CH3CN/H2O 9:1). Fine-tuning the ratio of the reagents, the
photocatalyst loading, and reaction time allowed an excellent
79% yield to be obtained for the targeted hydroalkylation
(Table 1, entries 5−6). Several control experiments revealed
that excluding light, PC1, or B1 did not lead to any product
formation (Table 1, entries 7−8). Moreover, 3 was not
produced at elevated temperatures either (Table 1, entry 9).
The exclusion of molecular oxygen appeared to be crucial as
air-equilibrated conditions led to a significantly reduced yield
(Table 1, entry 10: 37%), while O2-saturation shut down
reactivity (Table 1, entry 11). It is important to mention that,

Figure 1. (A) Boryl radicals (BRs) versus ligated boryl radicals
(LBRs). (B) NHC boranes as a bench-stable source of LBRs. (C)
Silyldifluoromethylation of electron-deficient alkenes. (D) This work.
LB: Lewis base.

Table 1. Optimization of Conditionsa

aGC yields are given using biphenyl as external standard.
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when direct UV-A light irradiation (Kessil lamp, λ = 390 nm,
full intensity) was used, product 3 was formed in a 75% assay
yield, without any photocatalyst added.
Using the optimized set of conditions (Table 1, entry 6), we

next evaluated the scope of the visible-light induced hydro-
alkylation protocol (Figure 2).

Hereto, dimethyl maleate was combined with several alkyl
iodides, and we found that the expected products were
obtained in all cases (4−23). Notably, the acid-sensitive acetal
function is well tolerated under our optimized conditions (8,
80%). Also iodides of medicinally relevant nitrogen-containing
scaffolds, including Boc-protected azetidine, pyrrolidine, and
piperidine, were competent reaction partners, allowing

Figure 2. Substrate scope for LBRs-mediated XAT under visible-light irradiation. For secondary and tertiary organic halides: 2 (0.5 mmol), 1 (2
equiv), B1 (1.2 equiv) in CH3CN/H2O 9:1 (5 mL) in the presence of PC1 (5 mol %), 3 h. For primary organic halides: 2 (2 equiv), 1 (0.5 mmol),
B1 (1.2 equiv) in CH3CN/H2O 9:1 (5 mL) in the presence of PC1 (5 mol %), 12 h. Solutions were bubbled with N2 (5 min) prior to irradiation
(λ = 456 nm). a Reaction time: 18 h. b Solvent: ethyl acetate. c See Supporting Information for further details. d NaI (2 equiv) was added to the
reaction mixture. brsm: based on remaining starting material.
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isolation of the corresponding adducts in good yields (9−12,
57−73%). In a similar vein, oxygen- and sulfur-containing alkyl
iodides could be engaged in the reaction protocol (13−15,
40−77%). Next, we employed 1-iodoadamantane as a model
for tertiary alkyl iodides, and we found that the hydroalkylated
product was obtained in very good yield (16, 79%). The
presence of a free carboxylic acid slightly reduced the reaction
efficiency; however, the targeted compound could still be
accessed in synthetically useful quantities (17, 56%).
Finally, we focused on primary alkyl iodides, which are

interesting yet more challenging to engage in the reaction
protocol. A slight modification of the reaction conditions (see
GP4 in the Supporting Information, including an inverted
organic halide/olefin ratio and extended light exposure)
resulted in complete conversion and yielded the compounds
18−23 in satisfactory yields (40−57%). Of note are the
unprotected aliphatic alcohols (20) and easily oxidizable
phenols (23).
With respect to the SOMOphile scope, we found that

different olefins could successfully take part in the trans-
formation (3, 24−30). The product of our benchmark reaction
(3) was obtained in 73% yield. Notably, when using phenyl
vinyl sulfone (2c), we were able to trap stabilized benzyl
radicals, while the reaction with dimethyl maleate did not
afford the expected product. Also, norbornenone, N-phenyl
acrylamide, methyl acrylate, and diethyl vinyl phosphonate
could be engaged as SOMOphiles in the reaction protocol,
showing its tolerance toward a wide variety of functional
groups, such as ketones, amides, esters, and phosphonates
(27−30, 40−59% yield). The applicability of our visible-light
photocatalytic hydroalkylation process was also demonstrated
by the fact that several derivatives of biologically active
molecules could be readily modified; these include densely
functionalized compounds, such as derivatives of sugars (i.e.,
α-D-glucofuranose and α-L-sorbofuranose), caffeine, cyclo-
uridine, and even a dipeptide (31−36, 43−76%).
While alkyl bromides were not reactive under our original

reaction conditions, we found that simple addition of NaI (2
equiv) could obviate this issue by generating the corresponding
alkyl iodide in situ via SN2. With this operationally facile
approach, we could subject various primary alkyl bromides to
the hydroalkylation strategy and obtain the targeted com-
pounds in decent yields (37−40, 44−50% yield).
Finally, we also successfully translated our batch protocol to

a fast and scalable continuous-flow process, which should
enable a fast transition between medicinal and process
chemistry (see GP6 described in the Supporting Informa-
tion).21 In flow, we were able to prepare compounds 3, 35, and
36 in good yields requiring only 30 min of light exposure. We
also exploited the continuous-flow technology to scale our
benchmark reaction up to 5 mmol (78% yield of the isolated
product, Figure 3), corresponding to a productivity of 21 g d−1

of compound 3.
To gain insight into the reaction mechanism, we performed

a series of experimental and computational studies. In
particular, we identified two crucial steps to be investigated,
i.e. (i) the generation of the ligated boryl radical22 and (ii) the
occurrence of a radical chain process. To reveal the presence of
the ligated boryl radical, we recorded an EPR spectrum of a
deoxygenated benzene solution of PC1 (0.05 M) and B1 (0.05
M) containing phenyl N-tert-butylnitrone (PBN, 0.0125 M) as
a spin trap. Prior to irradiation no signal was observed;
however, after continuous irradiation for 15 min (λ = 460 nm)

we clearly saw the appearance of two distinct features: one can
be attributed to the reduced photocatalyst (acridine radical),23

while the second feature is derived from the trapping of the
ligated boryl radical with PBN (Figure 4a; for further details,
see Section 6.1 in the Supporting Information).15a The
assignment is further supported by the observation of the
adduct of the LBR with PBN (PBN*NHCBH2

•) in HRMS
(Figure S5). These experiments unequivocally show the
formation of the desired LBR under photoredox conditions.
Direct observation of the ligated boryl radical via EPR was
unsuccessful due to its short lifetime.24 As further evidence, we
also tracked the interaction between PC1 and B1 via UV−vis
spectroscopy. In particular, when a deoxygenated CH3CN
solution (10−5 M) of PC1 and B1 was irradiated at 456 nm, we
observed that the former was directly converted into a species
absorbing in the 450−700 nm range (two isosbestic points
were discerned; see Figure 4b). We propose this species to be
the acridine radical generated upon single-electron reduction
by B1, based on a comparison with the literature for a similar
compound.25

In order to get some insights into the radical chain
mechanism, we conducted experiments with deuterium-labeled
substrates, and the results are collected in Figure 4c. The
deuterium incorporation was calculated via 1H NMR on
purified products. Overall, these experiments showed that
deuterium incorporation (product 3-d1) was only observed
when deuterated borane B1-d3 was exploited as an XAT agent,
while the use of B1 resulted in the formation of product 3
exclusively.
These results reveal that the hydroalkylated product is

obtained upon HAT from another molecule of B1 rather than
the solvent, thus pointing toward a radical chain mechanism.
We next wondered if the latter could be the rate-determining
step of the transformation; therefore, we set off to evaluate the
kinetic isotope effect (KIE) of the reaction (Figure 4d). First,
we measured the KIE through a competition experiment.
Hereto, we performed our benchmark reaction in the presence
of an equimolar mixture of B1 and B1-d3 (5 equiv each) and a
KIE value of 3.5 was found. However, when we calculated this
value with the parallel reactions method by performing
independent reactions under optimized conditions, one
containing B1 and one containing B1-d3, we found a KIE of

Figure 3. Translation to continuous-flow conditions (see GP6 in the
Supporting Information) and scale-up.
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only 1.09. Taken together, these experiments suggest that the
HAT step is not involved in the rate-determining step of the
reaction.26 Finally, we determined a quantum yield of 2%. Such
a modest value is in accordance with a process being supported
by either short-lived radical chain propagations, an inefficient
initiation process27 or decomposition of the photocatalyst

(further mechanistic insights are reported in Section 6 of the
Supporting Information).28

We also performed a computational investigation intended
to model the entire reaction profile through the simulation of
all the key steps, including some possible parasitic pathways.
Thus, we adopted DFT at the ωB97xD/def2TZVP level of
theory to optimize the relevant stationary points, also including

Figure 4. (A) Electron paramagnetic resonance (EPR) spectrum (black) obtained upon irradiation (λ = 460 nm) of a deoxygenated 0.0125 M
benzene solution of phenyl N-tert-butylnitrone containing PC1 (0.05 M) and B1 (0.05 M). Simulated profiles for acridine radical generated from
PC1 upon SET (red) and of the PBN*NHCBH2

• (blue) are also shown (see Section 6.1 in the Supporting Information for experimental and
simulation parameters). (B) UV−vis spectra of a deoxygenated CH3CN solution of PC1 and B1 (both 10−5 M) irradiated over 4.25 min. (C)
Deuteration experiments. (D) Determination of the kinetic isotope effect (KIE). (E) Computational investigation.
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the effect of the solvent through an implicit model (Figure 4e;
see also Section 10 of the Supporting Information for further
details). We started by considering LBR I reacting with
iodocyclohexane 1a through TS1 (ΔG‡ = +11.6 kcal·mol−1) to
afford cyclohexyl radical II. This nucleophilic radical (II) adds
subsequently onto dimethyl maleate 2b through TS2 (ΔG‡ =
+15.5 kcal·mol−1) to deliver radical adduct III. Next, the
targeted hydroalkylated product 5 is formed through reaction
of III with NHC-ligated borane B1 via TS3 (ΔG‡ = +12.4 kcal·
mol−1). Notably, all these steps are exergonic in nature, with
ΔG values in the −11.9 to −17.4 kcal·mol−1 range.
In this intricate ballet of fleeting radical intermediates, we

realized that a careful balance between the XAT, the radical
addition, and the final HAT steps was crucial to avoid parasitic
reaction pathways.11a,b,15b Accordingly, we also evaluated the
possibility for these intermediates to undergo competitive, yet
nonproductive pathways, including the direct addition of LBR
I onto dimethyl maleate 2b with formation of a new B−C
bond (through TS4) and the reduction of the cyclohexyl
radical II to cyclohexane (through TS5). However, our
computational analysis revealed that both steps occur with
higher activation energies and less negative energy gains
compared to those describing the desired process. Intrigued by
the lack of reactivity of organic bromides in our reaction, we
also computed ΔG and ΔG‡ for the XAT step by LBR I for
bromocyclohexane.
By comparing the results with those obtained for the iodo

analogue 1a, it seems that the difference in reactivity can be
mainly attributed to kinetic factors (ΔG‡

R‑I = +11.6 kcal·mol−1
vs ΔG‡

R‑Br = +17.9 kcal·mol−1), as the process shows similar
driving forces for both halides (ΔGR‑I = −13.0 kcal·mol−1 vs
ΔGR‑Br = −13.8 kcal·mol−1).
Finally, we were interested in comparing quantitatively LBR

I with other commonly used halogen abstractors, including α-
aminoalkyl and (tris(trimethylsilyl)silyl radicals and a conven-
tional tin-based XAT reagent (Me3Sn•). As depicted in Figure
4e, a clear trend emerges. On the one hand, the XAT step
shows very low activation energies in the case of metalloidyl
radicals (i.e., R3Si• and R3Sn•; for the tin-based abstractor it is
barrierless), while LBR I and the α-aminoalkyl radical display
significant ΔG‡ values (+11.6 and 15.0 kcal·mol−1, respec-
tively). On the other hand, from a thermodynamic point of

view, the XAT process is highly exergonic for metalloidyl
radicals, moderately exergonic for LBR I, and essentially
thermoneutral for the α-amino radical. In the latter case, the
formation of an iminium ion resulting from the elimination of
iodide was invoked as the driving force for the whole
process.19a

With both experimental and computational insights
considered together, a mechanistic scenario is proposed in
Figure 5. PC1 absorbs light resulting in formation of the
corresponding highly oxidizing excited state (E(PC*/PCred) =
+2.06 V vs SCE).29 This excited state can react with B1
(Epa(B1•+/B1) = +0.89 V vs (SCE) via single-electron transfer
to afford LBR I upon deprotonation. The latter intermediate is
entrusted with the desired XAT step, which is expected to be
relatively fast (k ≈ 108 M−1 s−1),30 thus yielding the alkyl
radical II. This radical can be subsequently trapped by the
electron-poor olefin to give adduct III. The observed inhibition
effect of O2 (Table 1, entries 10−11) can be explained by
taking into account that LBR I is known to react even faster
with molecular oxygen (k > 108 M−1 s−1),30 thus confiscating
this crucial intermediate for the XAT event. Alternatively, it has
been reported that molecular oxygen can also quench the
excited state of PC1 at diffusion controlled rates to form
singlet oxygen (k = 2 × 109 M−1 s−1).31 Next, as shown by the
deuterium labeling experiments, III abstracts a hydrogen atom
from B1 in a polarity-matched step to give product 3 and
subsequently kicks off the chain propagation.32

■ CONCLUSIONS
In conclusion, we have shown that N-heterocyclic carbene
(NHC) borane B1 is an efficient XAT agent to sustain the
radical hydroalkylation of olefins. This is a significant
advancement to previous reports where NHC-ligated boryl
radicals were mainly used as radical chain carriers for radical
reductions. Our method shows remarkable generality, robust-
ness, and versatility, as it does not rely on any interaction
between the ligated borane and the organic halide to generate
nucleophilic alkyl radicals under visible light irradiation. Due to
the mild reaction conditions, it is applicable to a vast array of
substrates, including biologically active compounds. And

Figure 5. Proposed mechanism for the photoinduced XAT by N-heterocarbene boryl radicals for C−C bond formation. Redox potentials are
reported vs SCE.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c10444
J. Am. Chem. Soc. 2023, 145, 991−999

996

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c10444/suppl_file/ja2c10444_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10444?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10444?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10444?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10444?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c10444?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


finally, continuous-flow technology can be exploited to
accelerate and scale our methodology.
A detailed experimental and spectroscopic mechanistic

investigation describes the key role of the NHC-based boryl
radicals in the operative reaction mechanism. This is further
corroborated by computational analysis, indicating that the
described process is the most favorable one with respect to
possible competing pathways.
While NHC-ligated boryl radicals have been only recently

exploited in radical chemistry, this investigation represents an
important step toward the appreciation and the exploitation of
the properties and the reactivity of these boryl species. Hence,
we are confident that this work will stimulate further research
into the use of LBRs for radical-based synthetic trans-
formations.
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