148 research outputs found

    State-of-the-art imaging for glioma surgery.

    Get PDF
    Diffuse gliomas are infiltrative primary brain tumors with a poor prognosis despite multimodal treatment. Maximum safe resection is recommended whenever feasible. The extent of resection (EOR) is positively correlated with survival. Identification of glioma tissue during surgery is difficult due to its diffuse nature. Therefore, glioma resection is imaging-guided, making the choice for imaging technique an important aspect of glioma surgery. The current standard for resection guidance in non-enhancing gliomas is T2 weighted or T2w-fluid attenuation inversion recovery magnetic resonance imaging (MRI), and in enhancing gliomas T1-weighted MRI with a gadolinium-based contrast agent. Other MRI sequences, like magnetic resonance spectroscopy, imaging modalities, such as positron emission tomography, as well as intraoperative imaging techniques, including the use of fluorescence, are also available for the guidance of glioma resection. The neurosurgeon's goal is to find the balance between maximizing the EOR and preserving brain functions since surgery-induced neurological deficits result in lower quality of life and shortened survival. This requires localization of important brain functions and white matter tracts to aid the pre-operative planning and surgical decision-making. Visualization of brain functions and white matter tracts is possible with functional MRI, diffusion tensor imaging, magnetoencephalography, and navigated transcranial magnetic stimulation. In this review, we discuss the current available imaging techniques for the guidance of glioma resection and the localization of brain functions and white matter tracts

    Localized energy for wave equations with degenerate trapping

    Get PDF
    Localized energy estimates have become a fundamental tool when studying wave equations in the presence of asymptotically at background geometry. Trapped rays necessitate a loss when compared to the estimate on Minkowski space. A loss of regularity is a common way to incorporate such. When trapping is sufficiently weak, a logarithmic loss of regularity suffices. Here, by studying a warped product manifold introduced by Christianson and Wunsch, we encounter the first explicit example of a situation where an estimate with an algebraic loss of regularity exists and this loss is sharp. Due to the global-in-time nature of the estimate for the wave equation, the situation is more complicated than for the Schr\"{o}dinger equation. An initial estimate with sub-optimal loss is first obtained, where extra care is required due to the low frequency contributions. An improved estimate is then established using energy functionals that are inspired by WKB analysis. Finally, it is shown that the loss cannot be improved by any power by saturating the estimate with a quasimode.Comment: 18 page

    The patients' experience of neuroimaging of primary brain tumors: a cross-sectional survey study

    Get PDF
    PURPOSE: To gain insight into how patients with primary brain tumors experience MRI, follow-up protocols, and gadolinium-based contrast agent (GBCA) use. METHODS: Primary brain tumor patients answered a survey after their MRI exam. Questions were analyzed to determine trends in patients' experience regarding the scan itself, follow-up frequency, and the use of GBCAs. Subgroup analysis was performed on sex, lesion grade, age, and the number of scans. Subgroup comparison was made using the Pearson chi-square test and the Mann-Whitney U-test for categorical and ordinal questions, respectively. RESULTS: Of the 100 patients, 93 had a histopathologically confirmed diagnosis, and seven were considered to have a slow-growing low-grade tumor after multidisciplinary assessment and follow-up. 61/100 patients were male, with a mean age ± standard deviation of 44 ± 14 years and 46 ± 13 years for the females. Fifty-nine patients had low-grade tumors. Patients consistently underestimated the number of their previous scans. 92% of primary brain tumor patients did not experience the MRI as bothering and 78% would not change the number of follow-up MRIs. 63% of the patients would prefer GBCA-free MRI scans if diagnostically equally accurate. Women found the MRI and receiving intravenous cannulas significantly more uncomfortable than men (p = 0.003). Age, diagnosis, and the number of previous scans had no relevant impact on the patient experience. CONCLUSION: Patients with primary brain tumors experienced current neuro-oncological MRI practice as positive. Especially women would, however, prefer GBCA-free imaging if diagnostically equally accurate. Patient knowledge of GBCAs was limited, indicating improvable patient information

    Localization of the Epileptogenic Zone Using Interictal MEG and Machine Learning in a Large Cohort of Drug-Resistant Epilepsy Patients

    Get PDF
    Objective: Epilepsy surgery results in seizure freedom in the majority of drug-resistant patients. To improve surgery outcome we studied whether MEG metrics combined with machine learning can improve localization of the epileptogenic zone, thereby enhancing the chance of seizure freedom.Methods: Presurgical interictal MEG recordings of 94 patients (64 seizure-free >1y post-surgery) were analyzed to extract four metrics in source space: delta power, low-to-high-frequency power ratio, functional connectivity (phase lag index), and minimum spanning tree betweenness centrality. At the group level, we estimated the overlap of the resection area with the five highest values for each metric and determined whether this overlap differed between surgery outcomes. At the individual level, those metrics were used in machine learning classifiers (linear support vector machine (SVM) and random forest) to distinguish between resection and non-resection areas and between surgery outcome groups.Results: The highest values, for all metrics, overlapped with the resection area in more than half of the patients, but the overlap did not differ between surgery outcome groups. The classifiers distinguished the resection areas from non-resection areas with 59.94% accuracy (95% confidence interval: 59.67–60.22%) for SVM and 60.34% (59.98–60.71%) for random forest, but could not differentiate seizure-free from not seizure-free patients [43.77% accuracy (42.08–45.45%) for SVM and 49.03% (47.25–50.82%) for random forest].Significance: All four metrics localized the resection area but did not distinguish between surgery outcome groups, demonstrating that metrics derived from interictal MEG correspond to expert consensus based on several presurgical evaluation modalities, but do not yet localize the epileptogenic zone. Metrics should be improved such that they correspond to the resection area in seizure-free patients but not in patients with persistent seizures. It is important to test such localization strategies at an individual level, for example by using machine learning or individualized models, since surgery is individually tailored

    Treatment outcome of patients with recurrent glioblastoma multiforme:A retrospective multicenter analysis

    Get PDF
    Glioblastoma multiforme (GBM) universally recurs with dismal prognosis. We evaluated the efficacy of standard treatment strategies for patients with recurrent GBM (rGBM). From two centers in the Netherlands, 299 patients with rGBM after first-line treatment, diagnosed between 2005 and 2014, were retrospectively evaluated. Four different treatment strategies were defined: systemic treatment (SYST), re-irradiation (RT), re-resection followed by adjuvant treatment (SURG) and best supportive care (BSC). Median OS for all patients was 6.5 months, and median PFS (excluding patients receiving BSC) was 5.5 months. Older age, multifocal lesions and steroid use were significantly associated with a shorter survival. After correction for confounders, patients receiving SYST (34.8%) and SURG (18.7%) had a significantly longer survival than patients receiving BSC (39.5%), 7.3 and 11.0 versus 3.1 months, respectively [HR 0.46 (p &lt;0.001) and 0.36 (p &lt;0.001)]. Median survival for patients receiving RT (7.0%) was 9.2 months, but this was not significantly different from patients receiving BSC (p = 0.068). Patients receiving SURG compared to SYST had a longer PFS (9.0 vs. 4.3 months, respectively; p &lt;0.001), but no difference in OS was observed. After adjustments for confounders, patients with rGBM selected for treatment with SURG or SYST do survive significantly longer than patients who are selected for BSC based on clinical parameters. The value of reoperation versus systemic treatment strategies needs further investigation.</p

    Subcutaneous tumor seeding after biopsy in gliomatosis cerebri

    Get PDF
    We observed a patient with subcutaneous seeding from gliomatosis cerebri with a low-grade histopathology. A 33-year-old woman with neurofibromatosis type 1 presented with progressive headache, diplopia, dysphagia, and a rightward instability. On neurological examination dysarthria, gait ataxia, and left-sided central facial and hypoglossal palsies were determined. MRI of the brain demonstrated diffuse, infiltrative non-enhancing lesions in the pons, both cerebellar hemispheres, the parahippocampal gyrus, and the thalamus. A stereotactic biopsy demonstrated an astrocytoma WHO grade 2. These characteristics confirmed gliomatosis cerebri. Three months later, the patient presented with hydrocephalus and a subcutaneous swelling directly underneath the surgical scar. The subcutaneous swelling was removed and the hydrocephalus was treated by ventriculoperitoneal shunting. Histopathological examination confirmed a subcutaneous manifestation of low-grade oligoastrocytoma. Gliomatosis cerebri with low-grade histology can seed subcutaneously

    Spatial concordance of DNA methylation classification in diffuse glioma.

    Get PDF
    BACKGROUND: Intratumoral heterogeneity is a hallmark of diffuse gliomas. DNA methylation profiling is an emerging approach in the clinical classification of brain tumors. The goal of this study is to investigate the effects of intratumoral heterogeneity on classification confidence. METHODS: We used neuronavigation to acquire 133 image-guided and spatially separated stereotactic biopsy samples from 16 adult patients with a diffuse glioma (7 IDH-wildtype and 2 IDH-mutant glioblastoma, 6 diffuse astrocytoma, IDH-mutant and 1 oligodendroglioma, IDH-mutant and 1p19q codeleted), which we characterized using DNA methylation arrays. Samples were obtained from regions with and without abnormalities on contrast-enhanced T1-weighted and fluid-attenuated inversion recovery MRI. Methylation profiles were analyzed to devise a 3-dimensional reconstruction of (epi)genetic heterogeneity. Tumor purity was assessed from clonal methylation sites. RESULTS: Molecular aberrations indicated that tumor was found outside imaging abnormalities, underlining the infiltrative nature of this tumor and the limitations of current routine imaging modalities. We demonstrate that tumor purity is highly variable between samples and explains a substantial part of apparent epigenetic spatial heterogeneity. We observed that DNA methylation subtypes are often, but not always, conserved in space taking tumor purity and prediction accuracy into account. CONCLUSION: Our results underscore the infiltrative nature of diffuse gliomas and suggest that DNA methylation subtypes are relatively concordant in this tumor type, although some heterogeneity exists

    Blood volume measurement with indocyanine green pulse spectrophotometry: dose and site of dye administration

    Get PDF
    (1) To determine the optimal administration site and dose of indocyanine green (ICG) for blood volume measurement using pulse spectrophotometry, (2) to assess the variation in repeated blood volume measurements for patients after subarachnoid hemorrhage and (3) to evaluate the safety and efficacy of this technique in patients who were treated for an intracranial aneurysm. Four repeated measurements of blood volume (BV) were performed in random order of bolus dose (10 mg or 25 mg ICG) and venous administration site (peripheral or central) in eight patients admitted for treatment of an intracranial aneurysm. Another five patients with subarachnoid hemorrhage underwent three repeated BV measurements with 25 mg ICG at the same administration site to assess the coefficient of variation. The mean +/- SD in BV was 4.38 +/- 0.88 l (n = 25) and 4.69 +/- 1.11 l (n = 26) for 10 mg and 25 mg ICG, respectively. The mean +/- SD in BV was 4.59 +/- 1.15 l (n = 26) and 4.48 +/- 0.86 l (n = 25) for central and peripheral administration, respectively. No significant difference was found. The coefficient of variance of BV measurement with 25 mg of ICG was 7.5% (95% CI: 3-12%). There is no significant difference between intravenous administration of either 10 or 25 mg ICG, and this can be injected through either a peripheral or central venous catheter. The 7.5% coefficient of variation in BV measurements determines the detectable differences using ICG pulse spectrophotometr

    Quantifying eloquent locations for glioblastoma surgery using resection probability maps

    Get PDF
    OBJECTIVE Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the "expected residual tumor volume" (eRV) and the "expected resectability index" (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined. METHODS Consecutive patients with first-time glioblastoma surgery in 2012-2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya's tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied. RESULTS Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors. CONCLUSIONS The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions

    On the cutting edge of glioblastoma surgery:where neurosurgeons agree and disagree on surgical decisions

    Get PDF
    OBJECTIVE: The aim of glioblastoma surgery is to maximize the extent of resection while preserving functional integrity. Standards are lacking for surgical decision-making, and previous studies indicate treatment variations. These shortcomings reflect the need to evaluate larger populations from different care teams. In this study, the authors used probability maps to quantify and compare surgical decision-making throughout the brain by 12 neurosurgical teams for patients with glioblastoma. METHODS: The study included all adult patients who underwent first-time glioblastoma surgery in 2012-2013 and were treated by 1 of the 12 participating neurosurgical teams. Voxel-wise probability maps of tumor location, biopsy, and resection were constructed for each team to identify and compare patient treatment variations. Brain regions with different biopsy and resection results between teams were identified and analyzed for patient functional outcome and survival. RESULTS: The study cohort consisted of 1087 patients, of whom 363 underwent a biopsy and 724 a resection. Biopsy and resection decisions were generally comparable between teams, providing benchmarks for probability maps of resections and biopsies for glioblastoma. Differences in biopsy rates were identified for the right superior frontal gyrus and indicated variation in biopsy decisions. Differences in resection rates were identified for the left superior parietal lobule, indicating variations in resection decisions. CONCLUSIONS: Probability maps of glioblastoma surgery enabled capture of clinical practice decisions and indicated that teams generally agreed on which region to biopsy or to resect. However, treatment variations reflecting clinical dilemmas were observed and pinpointed by using the probability maps, which could therefore be useful for quality-of-care discussions between surgical teams for patients with glioblastoma
    corecore