10,526 research outputs found
The Tensor Hierarchies of Pure N=2,d=4,5,6 Supergravities
We study the supersymmetric tensor hierarchy of pure (gauged) N=2,d=4,5,6
supergravity and compare them with those of the pure, ungauged, theories
(worked out by Gomis and Roest for d=5) and the predictions of the Kac-Moody
approach made by Kleinschmidt and Roest. We find complete agreement in the
ungauged case but we also find that, after gauging, new Stueckelberg symmetries
reduce the number of independent "physical" top-forms. The analysis has to be
performed to all orders in fermion fields.
We discuss the construction of the worldvolume effective actions for the
p-branes which are charged with respect to the (p+1)-form potentials and the
relations between the tensor hierarchies and p-branes upon dimensional
reduction.Comment: LaTeX2e file, 20 pages, 1 figure Results refined by extension of the
analysis to all orders in fermion
A Massive S-duality in 4 dimensions
We reduce the Type IIA supergravity theory with a generalized Scherk-Schwarz
ansatz that exploits the scaling symmetry of the dilaton, the metric and the NS
2-form field. The resulting theory is a new massive, gauged supergravity theory
in four dimensions with a massive 2-form field and a massive 1-form field. We
show that this theory is S-dual to a theory with a massive vector field and a
massive 2-form field, which are dual to the massive 2-form and 1-form fields in
the original theory, respectively. The S-dual theory is shown to arise from a
Scherk-Schwarz reduction of the heterotic theory. Hence we establish a massive,
S-duality type relation between the IIA theory and the heterotic theory in four
dimensions. We also show that the Lagrangian for the new four dimensional
theory can be put in the most general form of a D=4, N=4 gauged Lagrangian
found by Schon and Weidner, in which (part of) the SL(2) group has been gauged.Comment: 20 pages, references adde
VLTI/MIDI 10 micron interferometry of the forming massive star W33A
We report on resolved interferometric observations with VLTI/MIDI of the
massive young stellar object (MYSO) W33A. The MIDI observations deliver
spectrally dispersed visibilities with values between 0.03 and 0.06, for a
baseline of 45m over the wavelength range 8-13 micron. The visibilities
indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron
which increases to 240AU at 13 micron, scales previously unexplored among
MYSOs. This observed trend is consistent with the temperature falling off with
distance. 1D dust radiative transfer models are simultaneously fit to the
visibility spectrum, the strong silicate feature and the shape of the mid
infrared spectral energy distribution (SED). For any powerlaw density
distribution, we find that the sizes (as implied by the visibilities) and the
stellar luminosity are incompatible. A reduction to a third of W33A's
previously adopted luminosity is required to match the visibilities; such a
reduction is consistent with new high resolution 70 micron data from Spitzer's
MIPSGAL survey. We obtain best fits for models with shallow dust density
distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the
silicate feature produced by decreasing the ISM ratio of graphite to silicates
and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter
Minimal Stability in Maximal Supergravity
Recently, it has been shown that maximal supergravity allows for
non-supersymmetric AdS critical points that are perturbatively stable. We
investigate this phenomenon of stability without supersymmetry from the
sGoldstino point of view. In particular, we calculate the projection of the
mass matrix onto the sGoldstino directions, and derive the necessary conditions
for stability. Indeed we find a narrow window allowing for stable SUSY breaking
points. As a by-product of our analysis, we find that it seems impossible to
perturb supersymmetric critical points into non-supersymmetric ones: there is a
minimal amount of SUSY breaking in maximal supergravity.Comment: 27 pages, 1 figure. v2: two typos corrected, published versio
Anti-de Sitter Supersymmetry
We give a pedagogical introduction to certain aspects of supersymmetric field
theories in anti-de Sitter space. Among them are the presence of masslike terms
in massless wave equations, irreducible unitary representations and the
phenomenon of multiplet shortening.Comment: Lectures presented by B. de Wit at the Winter School of Theoretical
Physics, Polanica, Poland, February 1999. 23 pp., LateX file, requires
packages latexsym, amsfonts, cl2emult.cl
More on Membranes in Matrix Theory
We study noncompact and static membrane solutions in Matrix theory. Demanding
axial symmetry on a membrane embedded in three spatial dimensions, we obtain a
wormhole solution whose shape is the same with the catenoidal solution of
Born-Infeld theory. We also discuss another interesting class of solutions,
membranes embedded holomorphically in four spatial dimensions, which are 1/4
BPS.Comment: 7 pages, LaTeX; expanded to treat matrix membrane solutions with
electric flux, equivalently fundamental strings; to appear in Phys. Rev.
N=2 supergravity in five dimensions revisited
We construct matter-coupled N=2 supergravity in five dimensions, using the
superconformal approach. For the matter sector we take an arbitrary number of
vector-, tensor- and hyper-multiplets. By allowing off-diagonal vector-tensor
couplings we find more general results than currently known in the literature.
Our results provide the appropriate starting point for a systematic search for
BPS solutions, and for applications of M-theory compactifications on Calabi-Yau
manifolds with fluxes.Comment: 35 pages; v.2: A sign changed in a bilinear fermion term in (5.7
Lectures on Gauged Supergravity and Flux Compactifications
The low-energy effective theories describing string compactifications in the
presence of fluxes are so-called gauged supergravities: deformations of the
standard abelian supergravity theories. The deformation parameters can be
identified with the various possible (geometric and non-geometric) flux
components. In these lecture notes we review the construction of gauged
supergravities in a manifestly duality covariant way and illustrate the
construction in several examples.Comment: 48 pages, lectures given at the RTN Winter School on Strings,
Supergravity and Gauge Theories, CERN, January 200
Electric/magnetic duality for chiral gauge theories with anomaly cancellation
We show that 4D gauge theories with Green-Schwarz anomaly cancellation and
possible generalized Chern-Simons terms admit a formulation that is manifestly
covariant with respect to electric/magnetic duality transformations. This
generalizes previous work on the symplectically covariant formulation of
anomaly-free gauge theories as they typically occur in extended supergravity,
and now also includes general theories with (pseudo-)anomalous gauge
interactions as they may occur in global or local N=1 supersymmetry. This
generalization is achieved by relaxing the linear constraint on the embedding
tensor so as to allow for a symmetric 3-tensor related to electric and/or
magnetic quantum anomalies in these theories. Apart from electric and magnetic
gauge fields, the resulting Lagrangians also feature two-form fields and can
accommodate various unusual duality frames as they often appear, e.g., in
string compactifications with background fluxes.Comment: 37 pages; v2: typos corrected and 1 reference adde
The R-map and the Coupling of N=2 Tensor Multiplets in 5 and 4 Dimensions
We study the dimensional reduction of five dimensional N=2
Yang-Mills-Einstein supergravity theories (YMESGT) coupled to tensor
multiplets. The resulting 4D theories involve first order interactions among
tensor and vector fields with mass terms. If the 5D gauge group, K, does not
mix the 5D tensor and vector fields, the 4D tensor fields can be integrated out
in favor of 4D vector fields and the resulting theory is dual to a standard 4D
YMESGT. The gauge group has a block diagonal symplectic embedding and is a
semi-direct product of the 5D gauge group K with a Heisenberg group of
dimension (2P+1), where 2P is the number of tensor fields in five dimensions.
There exists an infinite family of theories, thus obtained, whose gauge groups
are pp-wave contractions of the simple noncompact groups of type SO*(2M). If,
on the other hand, the 5D gauge group does mix the 5D tensor and vector fields,
the resulting 4D theory is dual to a 4D YMESGT whose gauge group does, in
general,NOT have a block diagonal symplectic embedding and involves additional
topological terms. The scalar potentials of the dimensionally reduced theories
naturally have some of the ingredients that were found necessary for stable de
Sitter ground states. We comment on the relation between the known 5D and 4D,
N=2 supergravities with stable de Sitter ground states.Comment: 42 pages;latex fil
- …