1,001 research outputs found
Proterozoic–Paleozoic Sedimentary Rocks and Mesozoic–Cenozoic Landscapes of the Cape Mountains Across the Kango Complex Reveal ‘More Gaps Than Record’ from Rodinia and Gondwana to Africa
The Kango (Cango) region flanks the northern margins of the Klein Karoo and the Cape Mountains across the Western Cape Province of South Africa. It preserves a condensed Proterozoic–Paleozoic stratigraphy exposed via a Mesozoic–Cenozoic morphology with a present Alpine-like topography. Its rocks and landscapes have been repeatedly mapped and documented for the past 150 years. Over the last 25 years, we remapped and dated a central-eastern section of this region. The subvertically bedded and cleaved rocks reveal an 8–10 km thick stratigraphy covering more than 700 million years between ca. 1200 and 500 Ma with several unconformities and disconformities. At ca. 252 Ma, during the Cape orogeny, this Kango Complex was deformed along thrusts and sub-isoclinal folds producing steeply dipping phyllites and slates. It was uplifted by 3–5 km during the Kalahari epeirogeny between 140 and 60 Ma while eroding at ca. 100–200 m/m.y. (120–80 Ma). During the Cenozoic, the rate of uplift decreased by an order of magnitude and today is ca. 0.4–0.7 m/m.y. across steep slopes and canyons in contrast to the Himalayas where erosion rates are about hundred times faster. A recent publication about this central-eastern section of the Kango region disputes the existence of regional isoclinal folds and suggests that deposition of the oldest sedimentary successions, including carbonate rocks of the Cango Caves (limestone-marble with enigmatic microfossils) was simple, continuous and restricted to between ca. 700 and 500 Ma, decreasing earlier estimates of the stratigraphic age range by 60–80%. Similarly, recent interpretations of the complex landscapes link the northern contact between the Kango and Table Mountain rock sequences to Quaternary faults. We present a new geological database, mapped between 1:500 and 1:10,000 scales, and twelve stratigraphic sections with younging directions linked to structural and isotopic data that support repetitions along regional isoclinal folds and thrust zones of the Kango sequences during the Permo–Triassic Cape orogeny, and geomorphic data that link the origin of its landscapes to weathering and erosion during the Cretaceous–Cenozoic Kalahari epeirogeny. During its evolution, the Kango Basin directly flanked both Grenvillian and Pan-African Mountain systems. But, at an average sedimentation rate of ca. 1 mm/70 years (0.014 mm/year) and with present low erosion rates (0.005 mm/year), there is likely more time missing than preserved of the tectono-erosion across these different regions of Rodinia and Gondwana before Africa emerged. To further evaluate the geodynamic significance of these time gaps requires more field mapping linked to new transdisciplinary geosciences.
RÉSUMÉLa région du Kango (Cango) flanque les marges nord du petit Karoo et des montagnes du Cap dans la province du Western Cape en Afrique du Sud. Elle préserve une stratigraphie condensée protérozoïque–paléozoïque exposée via une morphologie mésozoïque–cénozoïque avec une topographie actuelle de type alpin. Ses roches et ses paysages ont été cartographiés et documentés durant les 150 dernières années. Au cours des 25 dernières années, nous avons re-cartographié et daté une section du centre-est de cette région. Les roches litées de manière subverticale et clivées révèlent une stratigraphie de 8 à 10 km d'épaisseur couvrant plus de 700 millions d'années entre environ 1200 et 500 Ma avec plusieurs non-conformités et disconformités. À 252 Ma, au cours de l'orogenèse du Cap, ce Complexe du Kango s'est déformé le long de chevauchements et de plis isoclinaux produisant des schistes à fort pendage. Il a été soulevé de 3 à 5 km au cours de l'épirogenèse du Kalahari entre 140 et 60 Ma, tout en s'érodant à 100–200 m/m.a. (120–80 Ma). Pendant le Cénozoïque, le taux de soulèvement a diminué d'un ordre de grandeur et il est aujourd'hui d'environ 0,4 à 0,7 m/m.a. à travers des pentes abruptes et des canyons, contrairement à l'Himalaya où les taux d'érosion sont environ cent fois plus rapides. Une publication récente sur cette section du centre-est de la région du Kango conteste l'existence de plis isoclinaux régionaux et suggère que le dépôt des plus anciennes successions sédimentaires, y compris les roches carbonatées des Grottes du Cango (marbre calcaire avec des microfossiles énigmatiques) était simple, continu et limité entre environ 700 et 500 Ma, diminuant les estimations antérieures de la tranche d'âge stratigraphique de 60-80%. De même, des interprétations récentes des paysages complexes relient le contact nord entre les séquences rocheuses du Kango et de Table Mountain à des failles quaternaires. Nous présentons une nouvelle base de données géologiques, cartographiée à des échelles entre 1:500 et 1:10,000, et douze coupes stratigraphiques avec des directions de superposition liées à des données structurales et isotopiques qui concordent avec les répétitions le long des plis isoclinaux régionaux et des zones de chevauchement des séquences du Kango pendant l’orogenèse permo–triassique du Cap, et des données géomorphiques qui relient l'origine de ses paysages à l’altération et à l'érosion au cours de l'épirogenèse du Kalahari au Crétacé–Cénozoïque. Au cours de son évolution, le bassin du Kango flanquait les systèmes montagneux grenvillien et panafricain. Mais, à un taux de sédimentation moyen d’environ 1 mm/70 ans (0,014 mm/an) et avec les faibles taux d'érosion actuels (0,005 mm/an), il manque probablement plus d’enregistrements de la tectonique et érosion de ces différentes régions de Rodinia et Gondwana avant l'émergence de l'Afrique que ce qui est actuellement préservé. Pour évaluer la signification géodynamique de ces intervalles de temps manquant, il faut d’avantage de cartographie de terrain associée à de nouvelles géosciences transdisciplinaires
From source to sink in central Gondwana: Exhumation of the Precambrian basement rocks of Tanzania and sediment accumulation in the adjacent Congo basin
Apatite fission track (AFT) and (U-Th)/He (AHe) thermochronometry data are reported and used to unravel the exhumation history of crystalline basement rocks from the elevated (>1000 m above sea level) but low-relief Tanzanian Craton. Coeval episodes of sedimentation documented within adjacent Paleozoic to Mesozoic basins of southern Tanzania and the Congo basin of the Democratic Republic of Congo indicate that most of the cooling in the basement rocks in Tanzania was linked to erosion. Basement samples were from an exploration borehole located within the craton and up to 2200 m below surface. Surface samples were also analyzed. AFT dates range between 317 ± 33 Ma and 188 ± 44 Ma. Alpha (Ft)-corrected AHe dates are between 433 ± 24 Ma and 154 ± 20 Ma. Modeling of the data reveals two important periods of cooling within the craton: one during the Carboniferous-Triassic (340–220 Ma) and a later, less well constrained episode, during the late Cretaceous. The later exhumation is well detected proximal to the East African Rift (70 Ma). Thermal histories combined with the estimated geothermal gradient of 9°C/km constrained by the AFT and AHe data from the craton and a mean surface temperature of 20°C indicate removal of up to 9 ± 2 km of overburden since the end of Paleozoic. The correlation of erosion of the craton and sedimentation and subsidence within the Congo basin in the Paleozoic may indicate regional flexural geodynamics of the lithosphere due to lithosphere buckling induced by far-field compressional tectonic processes and thereafter through deep mantle upwelling and epeirogeny tectonic processes
Old, strong continental lithosphere with weak Archaean margin at - 1.8 Ga, Kaapvaal Craton, South Africa
Low elastic strength of ancient lithosphere based on flexural analyses has been interpreted to reflect elevated regional geothermal gradients in response to higher global heat production in the past. Here we present a flexural analysis of Archean/Palaeoproterozoic sediment cover along the western margin of the Archaean Kaapvaal craton based on seismic stratigraphy. Our results show that between ~1.93 and ~1.75 Ga, the Archaean margin of the craton had an effective elastic thickness of 7.5 to 10km compared to its present day value of 60 to 70km. Because the Kaapvaal craton had already stabilized by ~2.7 Ga and was underlain by 150 to 300km thick strong mantle lithosphere, it is unlikely that the relatively thin elastic thickness along this old margin reflects a change in secular cooling of the Earth. Instead, we interpret the low elastic strength to be a transient marginal tectonic effect similar to that recorded along modern continental margins
The Grootfontein aquifer: Governance of a hydro-social system at Nash equilibrium
The Grootfontein groundwater aquifer is important to the water supply of the town Mahikeng in the North West Province of South Africa and to commercial agriculture in the Province, but the water table has fallen by up to 28 m as a consequence of over-abstraction since the 1980s. Institutional and hydrogeological issues impact the aquifer in complex ways, described here as a hydro-social system. Whilst the hydrogeology is well understood and South African laws provide for sustainable groundwater governance, poor stakeholder collaboration and other institutional problems mean that the overabstraction is likely to persist – an example of an undesirable Nash equilibrium. The Grootfontein aquifer case shows that groundwater underpins wider social-ecological-economic systems, and that more holistic management – taking the institutional context into account – is needed to underpin economic growth, employment and other public outcomes.
Significance:
• The cost of better natural resource stewardship, including groundwater, is likely to be considerably less than the losses that occur when it is absent.
• If local groundwater was better managed, it could make water supplies in Mahikeng cheaper and more reliable, which would in turn support local economic growth and employment
Possible lack of full cross-resistance of 5HT3 antagonists; a pilot study
We investigated the potential of cross-over to the serotonin receptor (5HT3) antagonist ondansetron after protection failure with tropisetron. Several cases of complete protection were observed. These limited data suggest that there is an indication for retreatment with a different 5HT3 antagonist after an initial failure to another and also stress the need and relevance for comparative studies between 5HT3 antagonists
A subduction origin for komatites and cratonic lithospheric mantle
We present a model in which the generation of komatiites in Archaean subduction zones produced depleted mantle residues that eventually formed the highly depleted portions of the Kaapvaal lithospheric mantle. The envisioned melting process is similar to that which has formed boninites in Phanerozoic subduction zones such as the Izu-Bonin-Mariana arc. The primary differences between the Archaean and Phanerozoic melting regimes are higher mean melting temperatures (1450 versus 1350 °C) and higher mean melting pressures (2.5 versus 1.5 GPa) for the komatiites. The komatiites from the Komati Formation in the Barberton greenstone belt are mafic enough to have produced the depletion seen in most Kaapvaal granular peridotite xenoliths. However, the most highly depleted Kaapvaal xenoliths require an even more Mg-rich magma than the Komati komatiites (Kk). Samples of boninite mantle residues from the fore-arc of the Marianas subduction zone are nearly as depleted as the Kaapvaal cratonic mantle, indicating that buoyant, craton-like mantle is being produced today. We speculate that production rates of cratonic mantle were greater in the Archaean due to the greater depth of melting for komatiites (relative to boninites) and greater worldwide arc length. The high production rates and high buoyancy of the komatiite mantle residues gave rise to the rapid growth and stabilization of the Kaapvaal craton in the Archaean
Matching researchers' needs and patients' contributions: Practical tips for meaningful patient engagement from the field of rheumatology
There is an increasing recognition of the importance of patient engagement and involvement in health research, specifically within the field of rheumatology. In general, researchers in this specialty appreciate the value of patients as partners in research. In practice, however, the majority of researchers does not involve patients on their research teams. Many researchers find it difficult to match their needs for patient engagement and the potential contributions from individuals living with rheumatic disease. In this Viewpoint, we provide researchers and patients practical tips for matching 'supply and demand,' based on our own experiences as patient engagement consultants and trainers in rheumatology research. All authors started as a 'naïve' patient or caregiver, an identity that evolved through a process of 'adversarial growth': positive changes that are experienced as a result of the struggle with highly challenging life circumstances. Here, we introduce four stages of adversarial growth in the context of research. We submit that all types of patients have their own experiences, qualities and skills, and can add specific input to research. The recommendations for engagement are not strict directives. They are meant as starting points for discussion or interview. Regardless of individual qualities and knowledge, we believe that all patients engaged in research have a single goal in common: to contribute to research that ultimately will change the lives of many other patients
“Please, you go first!” preferences for a COVID-19 vaccine among adults in the Netherlands
Background: Vaccination is generally considered the most direct way to restoring normal life after the outbreak of COVID-19, but the available COVID-19 vaccines are simultaneously embraced and dismissed. Mapping factors for vaccine hesitancy may help the roll-out of COVID-19 vaccines and provide valuable insights for future pandemics. Objectives: We investigate how characteristics of a COVID-19 vaccine affect the preferences of adult citizens in the Netherlands to take the vaccine directly, to refuse it outright, or to wait a few months and first look at the experiences of others. Methods: An online sample of 895 respondents participated between November 4th and November 10th, 2020 in a discrete choice experiment including the attributes: percentage of vaccinated individuals protected against COVID-19, month in which the vaccine would become available and the number of cases of mild and severe side effects. The data was analysed by means of panel mixed logit models. Results: Respondents found it important that a safe and effective COVID-19 vaccine becomes available as soon as possible. However, the majority did not want to be the first in line and would rather wait for the experiences of others. The predicted uptake of a vaccine with the optimal combination of attributes was 87%, of whom 55% preferred to take the vaccine after a waiting period. This latter group tends to be lower-educated. Older respondents gave more weight to vaccine effectiveness than younger respondents. Conclusions: The willingness to take a COVID-19 vaccine is high among adults in the Netherlands, but a considerable proportion prefers to delay their decision to vaccinate until experiences of others are known. Offering this wait-and-see group the opportunity to accept the invitation at a later moment may stimulate vaccination uptake. Our results further suggest that vaccination campaigns targeted at older citizens should focus on the effectiveness of the vaccine.Transport and Logistic
Series: Public engagement with research. Part 1: The fundamentals of public engagement with research
BACKGROUND: In the first of a four-part series, we describe the fundamentals of public engagement in primary care research. OBJECTIVES: The article's purpose is to encourage, inform and improve the researcher's awareness about public engagement in research. For a growing number of researchers, funders and patient organisations in Europe, public engagement is a moral and ethical imperative for conducting high-quality research. DISCUSSION: Starting with an explanation of the role of public engagement in research, we highlight its diversity and benefits to research, researchers and the public members involved. We summarise principles of good practice and provide valuable resources for researchers to use in their public engagement activities. Finally, we discuss some of the issues encountered when researchers collaborate with members of the public and provide practical steps to address them. Case studies of real-life situations are used to illustrate and aid understanding. CONCLUSION: We hope this article and the other papers in this series will encourage researchers to better consider the role and practice of public engagement and the potential added value to research that collaborating with the public could provide
- …