1,166 research outputs found
Blockchain For Food: Making Sense of Technology and the Impact on Biofortified Seeds
The global food system is under pressure and is in the early stages of a major transition towards more transparency, circularity, and personalisation. In the coming decades, there is an increasing need for more food production with fewer resources. Thus, increasing crop yields and nutritional value per crop is arguably an important factor in this global food transition.
Biofortification can play an important role in feeding the world. Biofortified seeds create produce with increased nutritional values, mainly minerals and vitamins, while using the same or less resources as non-biofortified variants. However, a farmer cannot distinguish a biofortified seed from a regular seed. Due to the invisible nature of the enhanced seeds, counterfeit products are common, limiting wide-scale adoption of biofortified crops. Fraudulent seeds pose a major obstacle in the adoption of biofortified crops.
A system that could guarantee the origin of the biofortified seeds is therefore required to ensure widespread adoption. This trust-ensuring immutable proof for the biofortified seeds, can be provided via blockchain technology
Ontogeny of midazolam glucuronidation in preterm infants
Purpose: In preterm infants, the biotransformation of midazolam (M) to 1-OH-midazolam (OHM) by cytochrome P450 3A4 (CYP3A4) is developmentally immature, but it is currently unknown whether the glucuronidation of OHM to 1-OH-midazolam glucuronide (OHMG) is also decreased. The aim of our study was to investigate the urinary excretion of midazolam and its metabolites OHM and OHMG in preterm neonates following the intravenous (IV) or oral (PO) administration of a single M dose. Methods: Preterm infants (post-natal age 3-13 days, gestational age 26-34 4/7 weeks) scheduled to undergo a stressful procedure received a 30-min IV infusion (n=15) or a PO bolus dose (n=7) of 0.1 mg/kg midazolam. The percentage of midazolam dose excreted in the urine as M, OHM and OHMG up to 6 h post-dose was determined. Results: The median percentage of the midazolam dose excreted as M, OHM and OHMG in the urine during the 6-h interval after the IV infusion was 0.44% (range 0.02-1.39%), 0.04% (0.01-0.13%) and 1.57% (0.36-7.7%), respectively. After administration of the PO bolus dose, the median percentage of M, OHM and OHMG excreted in the urine was 0.11% (0.02-0.59%), 0.02% (0.00-0.10%) and 1.69% (0.58-7.31%), respectively. The proportion of the IV midazolam dose excreted as OHMG increased significantly with postconceptional age (r=0.73, p <0.05). Conclusion: The glucuronidation of OHM appears immature in preterm infants less than 2 weeks of age. The observed increase in urinary excretion of OHMG with postconceptional age likely reflects the combined maturation of glucuronidation and renal function
Microdosing and other phase 0 clinical trials: facilitating translation in Drug Development
Increasing costs of drug development and ethical concernsabout the risks of exposing humans and animals to novelchemical entities favor limited exposure clinical trials suchas microdosing and other phase 0 trials. An increasing bodyof research supports the validity of extrapolation from thelimited drug exposure of phase 0 approaches to the full,therapeutic exposure. An increasing number of applicationsand design options demonstrate the versatility and exibilitythese approaches offer to drug developers
Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission
__Introduction__
Children admitted to a pediatric intensive care unit (ICU) are at high risk of developing acute kidney injury (AKI). Although serum creatinine (SCr) levels are used in clinical practice, they are insensitive for early diagnosis of AKI. Urinary neutrophil gelatinase-associated lipocalin (uNGAL) and kidney injury molecule-1 (KIM-1) are novel AKI biomarkers whose performance in pediatric ICU patients is largely unknown. In this study, we aimed to characterize uNGAL and KIM-1 patterns in children following ICU admission and to assess their properties in relation to identifying children at risk for AKI development.
__Methods__
From June 2010 until January 2014, we conducted a prospective observational cohort study of term-born children ages 1day to 1year on mechanical ventilation. Blood and urine samples were obtained every 6 to 12hours up to 72hours post-admission. Blood samples were assayed for SCr, and urine samples were assayed for uNGAL and KIM-1. The RIFLE (risk, injury, failure, loss, end-stage renal disease) classification as 150%, 200% or 300% of median SCr reference values was used to define AKI.
__Results__
A total of 100 children were included (80 survived). Their median age at admission was 27.7days (interquartile range (IQR), 1.5 to 85.5). The median duration of mechanical ventilation was 5.8days (IQR, 3.1 to 11.4). Thirty-five patients had evidence of AKI within the first 48hours post-admission, of whom 24 (69%) already had AKI when they entered the ICU. uNGAL and KIM-1 concentrations in AKI peaked between 6 to 12hours and between 12 to 24hours post-admission, respectively. The maximal area under the receiver operating characteristic curve (AUC) for uNGAL was 0.815 (95% confidence interval (CI), 0.685 to 0.945, P <0.001) at 0 to 6hours post-admission. The discriminative ability of KIM-1 was moderate, with a largest AUC of 0.737 (95% CI, 0.628 to 0.847; P <0.001) at 12 to 24hours post-admission. At the optimal cutoff point (126ng/ml), uNGAL concentration predicted AKI development correctly in 16 (84%) of 19 children, up to 24hours before a rise in SCr became apparent.
__Conclusions__
Levels of uNGAL and KIM-1 increase in patients with AKI following ICU admission and peak at 6 to 12hours and 12 to 24hours post-admission, respectively. uNGAL seems to be a reliable marker for identifying children who will develop AKI 24hours later
Involve Children and Parents in Clinical Studies
Contains fulltext :
218569.pdf (publisher's version ) (Open Access
Potentially Life-Threatening Interaction between Opioids and Intrathecal Baclofen in Individuals with a Childhood-Onset Neurological Disorder:A Case Series and Review of the Literature
BACKGROUND:  Spasticity and dystonia are movement impairments that can occur in childhood-onset neurological disorders. Severely affected individuals can be treated with intrathecal baclofen (ITB). Concomitant use of ITB and opioids has been associated with central nervous system (CNS) depression. This study aims to describe the clinical management of this interaction, based on a case series and review of literature. METHODS:  Four individuals with childhood-onset CNS disorders (age 8-24) and CNS-depressant overdose symptoms after the concomitant use of ITB and opioids are described. The Drug Interaction Probability Scale (DIPS) was calculated to assess the cause-relationship (doubtful 8) of the potential drug-drug interaction. A literature review of similar previously reported cases and the possible pharmacological mechanisms of opioid-baclofen interaction is provided. RESULTS:  After ITB and opioid co-administration, three out of four patients had decreased consciousness, and three developed respiratory depression. DIPS scores indicated a possible cause-relationship in one patient (DIPS: 4) and a probable cause-relationship in the others (DIPS: 6, 6, and 8). Discontinuation or adjusting ITB or opioid dosages resulted in clinical recovery. All patients recovered completely. In the literature, two articles describing nine unique cases were found. CONCLUSION:  Although the opioid-ITB interaction is incompletely understood, concomitant use may enhance the risk of symptoms of CNS-depressant overdose, which are potentially life-threatening. If concomitant use is desirable, we strongly recommend to closely monitor these patients to detect interaction symptoms early. Awareness and monitoring of the potential opioid-ITB interaction is essential to reduce the risk of severe complications
Effects of a clinical decision support system and patient portal for preventing medication-related falls in older fallers:Protocol of a cluster randomized controlled trial with embedded process and economic evaluations (ADFICE_IT)
BackgroundFalls are the leading cause of injury-related mortality and hospitalization among adults aged ≥ 65 years. An important modifiable fall-risk factor is use of fall-risk increasing drugs (FRIDs). However, deprescribing is not always attempted or performed successfully. The ADFICE_IT trial evaluates the combined use of a clinical decision support system (CDSS) and a patient portal for optimizing the deprescribing of FRIDs in older fallers. The intervention aims to optimize and enhance shared decision making (SDM) and consequently prevent injurious falls and reduce healthcare-related costs.MethodsA multicenter, cluster-randomized controlled trial with process evaluation will be conducted among hospitals in the Netherlands. We aim to include 856 individuals aged ≥ 65 years that visit the falls clinic due to a fall. The intervention comprises the combined use of a CDSS and a patient portal. The CDSS provides guideline-based advice with regard to deprescribing and an individual fall-risk estimation, as calculated by an embedded prediction model. The patient portal provides educational information and a summary of the patient’s consultation. Hospitals in the control arm will provide care-as-usual. Fall-calendars will be used for measuring the time to first injurious fall (primary outcome) and secondary fall outcomes during one year. Other measurements will be conducted at baseline, 3, 6, and 12 months and include quality of life, cost-effectiveness, feasibility, and shared decision-making measures. Data will be analyzed according to the intention-to-treat principle. Difference in time to injurious fall between the intervention and control group will be analyzed using multilevel Cox regression.DiscussionThe findings of this study will add valuable insights about how digital health informatics tools that target physicians and older adults can optimize deprescribing and support SDM. We expect the CDSS and patient portal to aid in deprescribing of FRIDs, resulting in a reduction in falls and related injuries
- …