16 research outputs found

    Invasion and MMP expression profile in desmoid tumours

    Get PDF
    Desmoid tumours are locally invasive soft tissue tumours in which beta-catenin mediated TCF-dependent transcription is activated. The role of soluble factors secreted by the myofibroblastic desmoid tumour, which could stimulate tumour invasiveness, was investigated. Using collagen gel invasion assays, the presence of factors stimulating invasion in desmoid conditioned media (CM) could be established. Since matrix metalloproteinases (MMPs) have been implicated in the process of tumoral invasion, the expression levels of the MMP family members were evaluated. Quantitative reverse transcription-PCR was used to determine the expression levels of MMP1, MMP2, MMP3, MMP7, MMP11, MMP12, MMP13, MMP14 and the inhibitors TIMP1, TIMP2 and TIMP3. Besides overexpression of MMP7, a known TCF-dependent target gene, a striking upregulation of the expression levels of MMP1, MMP3, MMP11, MMP12 and MMP13 in desmoid tumours, compared to unaffected fibroblasts from the same patients, was found. Treating the CM of desmoids with a synthetic and a physiologic MMP inhibitor reduced the invasion-stimulating capacity of the desmoid CM by approximately 50%. These results suggest the involvement of soluble factors, released by the desmoid cells, in stimulating invasion and implicate the MMPs as facilitators of invasion

    Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1.

    Get PDF
    Glucose deprivation, hypoxia and acidosis are characteristic features of the central core of most solid tumours. Myofibroblasts are stromal cells present in many such solid tumours, including those of the colon, and are known to be involved in all stages of tumour progression. HMGB1 is a nuclear protein with an important role in nucleosome stabilisation and gene transcription; it is also released from immune cells and is involved in the inflammatory process. We report that the microenvironmental condition of glucose deprivation is responsible for the active release of HMGB1 from various types of cancer cell lines (HT-29, MCF-7 and A549) under normoxic conditions. Recombinant HMGB1 (10 ng/ml) triggered proliferation in myofibroblast cells via activation of PI3K and MEK1/2. Conditioned medium collected from glucose-deprived HT-29 colon cancer cells stimulated the migration and invasion of colonic myofibroblasts, and these processes were significantly inhibited by immunoneutralising antibodies to HMGB1, RAGE and TLR4, together with specific inhibitors of PI3K and MEK1/2. Our data suggest that HMGB1 released from cancer cells under glucose deprivation is involved in stimulating colonic myofibroblast migration and invasion and that this occurs through the activation of RAGE and TLR4, resulting in the activation of the MAPK and PI3K signalling pathways. Thus, HMGB1 might be released by cancer cells in areas of low glucose in solid tumours with the resulting activation of myofibroblasts and is a potential therapeutic target to inhibit solid tumour growth

    Defective E-cadherin/catenin complexes in human cancer

    No full text

    Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands

    No full text
    E-cadherin is involved in the formation of cell-junctions and the maintenance of epithelial integrity. Direct evidence of E-cadherin mutations triggering tumorigenesis has come from the finding of inactivating germline mutations of the gene (CDH1) in hereditary diffuse gastric cancer (HDGC). We screened a series of 66 young gastric cancer probands for germline CDH1 mutations, and two novel missense alterations together with an intronic variant were identified. We then analysed the functional significance of the two exonic missense variants found here as well as a third germline missense variant that we previously identified in a HGDC family. cDNAs encoding either the wild-type protein or mutant forms of E-cadherin were stably transfected into CHO (Chinese hamster ovary) E-cadherin-negative cells. Transfected cell-lines were characterized in terms of aggregation, motility and invasion. We show that a proportion of apparently sporadic early-onset diffuse gastric carcinomas are associated with germline alterations of the E-cadherin gene. We also demonstrate that a proportion of missense variants are associated with significant functional consequences, suggesting that our cell model can be used as an adjunct in deciding on the potential pathogenic role of identified E-cadherin germline alterations
    corecore