4 research outputs found

    The host of GRB 060206: Kinematics of a distant galaxy

    Full text link
    Context. GRB afterglow spectra are sensitive probes of interstellar matter along the line-of-sight in their host galaxies, as well as in intervening galaxies. The rapid fading of GRBs makes it very difficult to obtain spectra of sufficient resolution and S/N to allow for these kinds of studies. Aims. We investigate the state and properties of the interstellar medium in the host of GRB 060206 at z= 4.048 with a detailed study of groundstate and finestructure absorption lines in an early afterglow spectrum. This allows us to derive conclusions on the nature and origin of the absorbing structures and their connection to the host galaxy and/or the GRB. Methods. We used early (starting 1.6 h after the burst) WHT/ISIS optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 detecting a range of metal absorption lines and their finestructure transitions. Additional information is provided by the afterglow lightcurve. The resolution and wavelength range of the spectra and the bright afterglow have facilitated a detailed study and fitting of the absorption line systems in order to derive column densities. We also used deep imaging to detect the host galaxy and probe the nature of an intervening system at z = 1.48 seen in absorption in the afterglow spectra. Results. We detect four discrete velocity systems in the resonant metal absorption lines, best explained by shells within and/or around the host created by starburst winds. The finestructure lines have no less than three components with strengths decreasing from the redmost components. We therefore suggest that the finestructure lines are best explained as being produced by UV pumping from which follows that the redmost component is the one closest to the burst where \ion{N}{v} was detected as well. The host is detected in deep HST imaging with F814WAB = 27.48 ±\pm 0.19 mag and a 3σ\sigma upper limit of H = 20.6 mag (Vega) is achieved. A candidate counterpart for the intervening absorption system is detected as well, which is quite exceptional for an absorber in the sightline towards a GRB afterglow. The intervening system shows no temporal evolution as claimed by Hao et al. (2007, ApJ, 659, 99), which we prove from our WHT spectra taken before and Subaru spectra taken during those observations

    Spectroscopy and multiband photometry of the afterglow of intermediate duration γ-ray burst GRB 040924 and its host galaxy

    Full text link
    Aims. We present optical photometry and spectroscopy of the afterglow and host galaxy of gamma-ray burst GRB 040924. This GRB had a rather short duration of T90 ~2.4 s, and a well sampled optical afterglow light curve. We aim to use this dataset to find further evidence that this burst is consistent with a massive star core-collapse progenitor. Methods. We combine the afterglow data reported here with those from the literature and compare the host properties with survey data. Results. We find that the global behaviour of the optical afterglow is well fit by a broken power-law, with a break at ~0.03 days. We determine the redshift z = 0.858 ±\pm 0.001 from the detected emission lines in our spectrum. Using the spectrum and photometry we derive global properties of the host, showing it to have similar properties to other long GRB hosts. We detect the [Ne III] emission line in the spectrum, and compare the fluxes of this line of a sample of 15 long GRB host galaxies with survey data, showing the long GRB hosts to be comparable to local metal-poor emission line galaxies in their [Ne III] emission. We fit the supernova bump accompanying this burst, and find that it is similar to other long GRB supernova bumps, but fainter. Conclusions. All properties of GRB 040924 (the associated supernova, the spectrum and SED of host and afterglow) are consistent with an origin in the core-collapse of a massive star

    The nature of the X-ray flash of August 24 2005 Photometric evidence for an on-axis z = 0.83 burst with continuous energy injection and an associated supernova?

    Full text link
    Aims.Our aim is to investigate the nature of the X-Ray Flash (XRF) of August 24, 2005. Methods.We present comprehensive photometric R-band observations of the fading optical afterglow of XRF 050824, from 11 min to 104 days after the burst. In addition we present observations taken during the first day in the BRIK\it BRIK bands and two epochs of spectroscopy. We also analyse available X-ray data. Results.The R-band lightcurve of the afterglow resembles the lightcurves of long duration Gamma-Ray Bursts (GRBs), i.e., a power-law, albeit with a rather shallow slope of α=0.6\alpha=0.6 ( FνtαF_{\nu} \propto t^{-\alpha}). Our late R-band images reveal the host galaxy. The rest-frame B-band luminosity is ~0.5 L*. The star-formation rate as determined from the [O II] emission line is ~ 1.8 M1.8~M_{\odot} yr-1. When accounting for the host contribution, the slope is α=0.65\alpha=0.65 ±\pm 0.01 and a break in the lightcurve is suggested. A potential lightcurve bump at 2 weeks can be interpreted as a supernova only if this is a supernova with a fast rise and a fast decay. However, the overall fit still shows excess scatter in the lightcurve in the form of wiggles and bumps. The flat lightcurves in the optical and X-rays could be explained by a continuous energy injection scenario, with an on-axis viewing angle and a wide jet opening angle ( \theta_j \ga {10}^\circ). If the energy injections are episodic this could potentially help explain the bumps and wiggles. Spectroscopy of the afterglow gives a redshift of z=0.828 ±\pm 0.005 from both absorption and emission lines. The spectral energy distribution (SED) of the afterglow has a power-law ( FννβF_{\nu} \propto \nu ^{-\beta}) shape with slope β=0.56{\beta}=0.56 ±\pm 0.04. This can be compared to the X-ray spectral index which is βX=1.0{\beta_{\rm X}}=1.0 ±\pm 0.1. The curvature of the SED constrains the dust reddening towards the burst to Av<0.5A_{\rm v}<0.5 mag

    Multi-wavelength afterglow observations of the high redshift GRB 050730

    Get PDF
    Context.GRB 050730 is a long duration high-redshift burst (z=3.967) that was discovered by Swift. The afterglow shows variability and was well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730 including observations covering the wavelength range from the millimeter to X-rays. Aims.We use multi-wavelength afterglow data to understand the complex temporal and spectral decay properties of this high redshift burst. Methods.Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r', R, i', I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 h post-burst in the B, V, R, I, J and K bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. Results.The early afterglow shows variability at early times and the slope steepens at 0.1 days (8.6 ks) in the B, V, r', R, i', I, J and K passbands. The early afterglow light curve decayed with a powerlaw slope index α1=0.60±0.07\alpha_1 = -0.60\pm0.07 and subsequently steepened to α2=1.71±0.06\alpha_2 = -1.71\pm0.06 based on the R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to theoretical predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw decay with αx=2.5±0.15\alpha_x = -2.5\pm0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 h after the burst. An electron energy index, p, of ~2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and implies that the synchrotron cooling frequency νc\nu_{\rm c} is above the X-ray band
    corecore