36,400 research outputs found

    The reconstruction of Rh(001) upon oxygen adsorption

    Get PDF
    We report on a first-principles study of the structure of O/Rh(001) at half a monolayer of oxygen coverage, performed using density-functional theory. We find that oxygen atoms sit at the center of the black squares of a chess-board, c(2Ă—2)c(2\times 2), pattern. This structure is unstable against a rhomboid distortion of the black squares, which shortens the distance between an O atom and two of the four neighboring Rh atoms, while lengthening the distance with respect to the other two. We actually find that the surface energy is further lowered by allowing the O atom to get off the short diagonal of the rhombus so formed. We predict that the latter distortion is associated with an order-disorder transition, occurring below room temperature. The above rhomboid distortion of the square lattice may be seen as a rotation of the empty, white, squares. Our findings are at variance with recent claims based on STM images, according to which it is instead the black squares which would rotate. We argue that these images are indeed compatible with our predicted reconstruction pattern.Comment: 14 pages (inclusive of 5 figures). To appear on Surface Scienc

    Is a Technological Singularity near also for bots in MMOGs?

    Get PDF
    Using the idea of the Technological Singularity this essay offers some reflections on the possible future of bots in Massively Multiplayer Online Games (MMOGs). The paper starts by briefly introducing the notion of Technological Singularity as the advent of a super-intelligent Artificial Intelligence that could threaten human existence. Bots are computer programs that automate repetitive and time consuming activities for the Internet user. In MMOGs, bots are often used to cheat and could have nefarious effects on the gameplay. Assuming that bots are rudimentary forms of Artificial Intelligence that also pose a threat to MMOGs and their players, the paper presents some evidence-based trends of the future evolution of bots and the implications of these for Virtual Worlds research

    Moving Image Preservation in Libraries

    Get PDF
    published or submitted for publicatio

    Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions

    Full text link
    We study smoothness of densities for the solutions of SDEs whose coefficients are smooth and nondegenerate only on an open domain DD. We prove that a smooth density exists on DD and give upper bounds for this density. Under some additional conditions (mainly dealing with the growth of the coefficients and their derivatives), we formulate upper bounds that are suitable to obtain asymptotic estimates of the density for large values of the state variable ("tail" estimates). These results specify and extend some results by Kusuoka and Stroock [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1--76], but our approach is substantially different and based on a technique to estimate the Fourier transform inspired from Fournier [Electron. J. Probab. 13 (2008) 135--156] and Bally [Integration by parts formula for locally smooth laws and applications to equations with jumps I (2007) The Royal Swedish Academy of Sciences]. This study is motivated by existing models for financial securities which rely on SDEs with non-Lipschitz coefficients. Indeed, we apply our results to a square root-type diffusion (CIR or CEV) with coefficients depending on the state variable, that is, a situation where standard techniques for density estimation based on Malliavin calculus do not apply. We establish the existence of a smooth density, for which we give exponential estimates and study the behavior at the origin (the singular point).Comment: Published in at http://dx.doi.org/10.1214/10-AAP717 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore