1,821 research outputs found

    Incorporation Of Nanocrystals With Different Dimensionalities In Hybrid Tio2/p3ht Solar Cells

    Get PDF
    We investigate the effect of TiO2 nanoparticles-nanospheres and nanorods-inserted in the poly(3-hexylthiophene) (P3HT) matrix of TiO2?P3HT inverted hybrid solar cells. X-ray diffraction, high-resolution transmission electron microscopy, small-angle x-ray scattering, photoluminescence, and photoelectrochemical experiments were employed to investigate the structure, morphology, and photoactivity of TiO2 nanoparticles modified with 2-thiopheneacetic acid, mixed or not with P3HT. Both TiO2 nanospheres and TiO2 nanorods presented a good dispersion in the polymer matrix. The incorporation of TiO2 nanospheres and nanorods has improved the photocurrent generation, and devices with efficiency values up to 1.35% were obtained. Our results reveal that the nanoscale morphology enables an enhanced interfacial area for exciton dissociation. In particular, the nanospheres contribute with their high specific area, and the nanorods contribute with their high aspect ratio.51Lee, C.-K., Pao, C.-W., Chen, C.-W., Correlation of nanoscale organizations of polymer and nanocrystals in polymer/inorganic nanocrystal bulk heterojunction hybrid solar cells: Insights from multiscale molecular simulations (2013) Energy Environ. Sci., 6, pp. 307-315Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Hybrid nanorod: Polymer solar cells (2002) Science, 295, pp. 2425-2427Sian, S., Chen, C.-W., Polymer-metal-oxide hybrid solar cells (2013) J. Mater. Chem. A, 1, pp. 10574-10591Das, J., A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells (2010) J. Mater. Chem., 20, pp. 4425-4431Cozzoli, P.D., Kornowski, A., Weller, H., Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods (2003) J. Am. Chem. Soc., 125, pp. 14539-14548Zeng, T.W., A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices (2006) Nanotechnology, 17, p. 5387Yang, P., TiO2 nanowire electron transport pathways inside organic photovoltaics (2013) Phys. Chem. Chem. Phys., 15, pp. 4566-4572Lin, Y., Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding (2012) Macromolecules, 45, pp. 8665-8673Ranjitha, A., Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer (2014) Superlattices Microstruct., 74, pp. 114-122Bolognesi, M., The effect of selective contact electrodes on the interfacial charge recombination kinetics and device efficiency of organic polymer solar cells (2011) Phys. Chem. Chem. Phys., 13, pp. 6105-6109Mor, G.K., High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays (2007) Appl. Phys. Lett., 91, p. 152111Planells, M., Oligothiophene interlayer effect on photocurrent generation for hybrid TiO2/P3HT solar cells (2014) Appl. Mater. Interfaces, 6, pp. 17226-17235Freitas, F.S., Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells (2012) Phys. Chem. Chem. Phys., 14, pp. 11990-11993Liu, K., Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO2 nanorods embedded in the active layer (2014) Nanoscale, 6, pp. 6180-6186Lin, Y.-Y., Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells (2009) J. Am. Chem. Soc., 131, pp. 3644-3649Eom, S.H., Roles of interfacial modifiers in hybrid solar cells: Inorganic/polymer bilayer versus inorganic/polymer: Fullerene bulk heterojunction (2014) Appl. Mater. Interfaces, 6, pp. 803-810Ravirajan, P., Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer (2006) J. Phys. Chem. B, 110, pp. 7635-7639Abate, A., Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells (2013) J. Am. Chem. Soc., 135, pp. 13538-13548Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering (1995) J. Appl. Cryst., 28, pp. 717-728Beaucage, G., Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension (1996) J. Appl. Cryst., 29, pp. 134-146Beaucage, G., Kammler, H.K., Pratsinis, S.E., Particle size distributions from smallangle scattering using global scattering functions (2004) J. Appl. Cryst., 37, pp. 523-535Khatri, I., Similar device architectures for inverted organic solar cell and laminated solid-state dye-sensitized solar cells (2012) ISRN Electron., 10Choi, H.C., Jung, Y.M., Kim, S.B., Size effects in the Raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38Li, G., Polymer self-organization enhances photovoltaic efficiency (2005) J. Appl. Phys., 98, p. 43704Salim, T., Solvent additives and their effects on blend morphologies of bulk heterojunctions (2011) J. Mater. Chem., 21, pp. 242-250Hwang, I.W., Carrier generation and transport in bulk heterojunction films processed with 1,8-octanedithiol as a processing additive (2008) J. Appl. Phys., 104, p. 033706Nguyen, H.Q., Synthesis and characterization of a polyisoprene-b-polystyrene-b-poly (3-hexylthiophene) triblock copolymer (2013) Polym. Chem., 4, pp. 462-465Prosa, T.J., X-ray structural studies of poly(3-alkylthiophenes): An example of an inverse comb (1992) Macromolecules, 25, p. 4364De Freitas, J.N., Connecting the (quantum) dots: Towards hybrid photovoltaic devices based on chalcogenide gels (2012) Phys. Chem. Chem. Phys., 14, pp. 15180-15184Yang, P., Identifying effects of TiO2 nanowires inside bulk heterojunction organic photovoltaics on charge diffusion and recombination (2014) J. Mater. Chem. C, 2, pp. 4922-4927Grancini, G., Boosting infrared light harvesting by molecular functionalization of metal oxide/polymer interfaces in efficient hybrid solar cells (2012) Adv. Funct. Mater., 22, pp. 2160-2166Liao, H.-C., Diketopyrrolopyrrole-based oligomer modified TiO2 nanorods for airstable and all solution processed poly(3-hexylthiophene): TiO2 bulk heterojunction inverted solar cell (2012) J. Mater. Chem., 22, pp. 10589-1059

    Modelos acoplados do IPCC-AR4 e o gradiente meridional de temperatua da superficie do mar no atlântico tropical : relaçoes com a precipitaçao no norte do nordeste do Brasil

    Get PDF
    Este artigo mostra como três modelos acoplados do Intergovernmental on Panel Climate Change - (IPCC-AR4), o FGOALS1. 0G – LASG do Institute of Atmospheric Physics of China, o GISSER da National Aeronautics Space Admnistration (NASA) e o GFDL_CM2 da National Oceanic and Atmospheric Administration (NOAA), simularam a variabilidade do gradiente meridional de Temperatura da Superfície do Mar (TSM), entre os meses de fevereiro a maio, no Atlântico Tropical (1901-1999). A precipitação durante a estação chuvosa (fevereiro a maio) no setor norte do Nordeste do Brasil (NEB) foi também analisada pelos três modelos e comparada com as observações. Os modelos GISSER e FGOALS1.0G mostraram melhor desempenho na simulação do sinal do gradiente meridional de TSM no Atlântico Tropical para o período de 1901 a 1999. Destaca-se que os modelos apresentaram um melhor desempenho na simulação da tendência decadal, conseguindo explicar entre 50% a 80% da variabilidade do gradiente, com a TSM do setor sul sendo mais bem simulada
    corecore