1,415 research outputs found

    WZW-like Action for Heterotic String Field Theory

    Full text link
    We complete the construction of the Neveu-Schwarz sector of heterotic string field theory begun in hep-th/0406212 by giving a closed-form expression for the action and gauge transformations. Just as the Wess-Zumino-Witten (WZW) action for open superstring field theory can be constructed from pure-gauge fields in bosonic open string field theory, our heterotic string field theory action is constructed from pure-gauge fields in bosonic closed string field theory. The construction involves a simple alternative form of the WZW action which is consistent with the algebraic structures of closed string field theory.Comment: 22 pages, no figures, LaTeX2

    Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways

    Module networks revisited: computational assessment and prioritization of model predictions

    Full text link
    The solution of high-dimensional inference and prediction problems in computational biology is almost always a compromise between mathematical theory and practical constraints such as limited computational resources. As time progresses, computational power increases but well-established inference methods often remain locked in their initial suboptimal solution. We revisit the approach of Segal et al. (2003) to infer regulatory modules and their condition-specific regulators from gene expression data. In contrast to their direct optimization-based solution we use a more representative centroid-like solution extracted from an ensemble of possible statistical models to explain the data. The ensemble method automatically selects a subset of most informative genes and builds a quantitatively better model for them. Genes which cluster together in the majority of models produce functionally more coherent modules. Regulators which are consistently assigned to a module are more often supported by literature, but a single model always contains many regulator assignments not supported by the ensemble. Reliably detecting condition-specific or combinatorial regulation is particularly hard in a single optimum but can be achieved using ensemble averaging.Comment: 8 pages REVTeX, 6 figure

    Twist Symmetry and Classical Solutions in Open String Field Theory

    Full text link
    We construct classical solutions of open string field theory which are not invariant under ordinary twist operation. From detailed analysis of the moduli space of the solutions, it turns out that our solutions become nontrivial at boundaries of the moduli space. The cohomology of the modified BRST operator and the CSFT potential evaluated by the level truncation method strongly support the fact that our nontrivial solutions correspond to the closed string vacuum. We show that the nontrivial solutions are equivalent to the twist even solution which was found by Takahashi and Tanimoto, and twist invariance of open string field theory remains after the shift of the classical backgrounds.Comment: 19 pages, 2 figures; v2: errors fixe

    Analytical Tachyonic Lump Solutions in Open Superstring Field Theory

    Full text link
    We construct a classical solution in the GSO(-) sector in the framework of a Wess-Zumino-Witten-like open superstring field theory on a non-BPS D-brane. We use an su(2) supercurrent, which is obtained by compactifying a direction to a circle with the critical radius, in order to get analytical tachyonic lump solutions to the equation of motion. By investigating the action expanded around a solution we find that it represents a deformation from a non-BPS D-brane to a D-brane-anti-D-brane system at the critical value of a parameter which is contained in classical solutions. Although such a process was discussed in terms of boundary conformal field theory before, our study is based on open superstring field theory including interaction terms.Comment: 17 pages, references adde

    Cosmological tachyon from cubic string field theory

    Full text link
    The classical dynamics of the tachyon scalar field of cubic string field theory is considered on a cosmological background. Starting from a nonlocal action with arbitrary tachyon potential, which encodes the bosonic and several supersymmetric cases, we study the equations of motion in the Hamilton-Jacobi formalism and with a generalized Friedmann equation, appliable in braneworld or modified gravity models. The cases of cubic (bosonic) and quartic (supersymmetric) tachyon potential in general relativity are automatically included. We comment the validity of the slow-roll approximation, the stability of the cosmological perturbations, and the relation between this tachyon and the Dirac-Born-Infeld one.Comment: 20 pages JHEP style, 1 figure; v4: misprints corrected, matches the published versio

    A machine learning pipeline for discriminant pathways identification

    Full text link
    Motivation: Identifying the molecular pathways more prone to disruption during a pathological process is a key task in network medicine and, more in general, in systems biology. Results: In this work we propose a pipeline that couples a machine learning solution for molecular profiling with a recent network comparison method. The pipeline can identify changes occurring between specific sub-modules of networks built in a case-control biomarker study, discriminating key groups of genes whose interactions are modified by an underlying condition. The proposal is independent from the classification algorithm used. Three applications on genomewide data are presented regarding children susceptibility to air pollution and two neurodegenerative diseases: Parkinson's and Alzheimer's. Availability: Details about the software used for the experiments discussed in this paper are provided in the Appendix
    • …
    corecore