2,775 research outputs found

    A hierarchical impact force reconstruction method for Aerospace composites

    Get PDF

    Impact source localisation in aerospace composite structures

    Get PDF
    The most commonly encountered type of damage in aircraft composite structures is caused by low-velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these events can cause severe internal material damage that is difficult to detect and may lead to a significant reduction of the structure's strength and fatigue life. For this reason there is an urgent need to develop structural health monitoring systems able to localise low-velocity impacts in both metallic and composite components as they occur. This article proposes a novel monitoring system for impact localisation in aluminium and composite structures, which is able to determine the impact location in real-time without a-priori knowledge of the mechanical properties of the material. This method relies on an optimal configuration of receiving sensors, which allows linearization of well-known nonlinear systems of equations for the estimation of the impact location. The proposed algorithm is based on the time of arrival identification of the elastic waves generated by the impact source using the Akaike Information Criterion. The proposed approach was demonstrated successfully on both isotropic and orthotropic materials by using a network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the validity of the proposed algorithm, since the impact sources were detected with a high level of accuracy. The proposed impact detection system overcomes current limitations of other methods and can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event.</p

    Proof of concept for a smart composite orbital debris detector

    Get PDF
    Space debris particles with dimensions smaller than tens of millimetres are not trackable with existing monitoring systems and have sufficient energy to harm orbiting Earth satellites during impact events. This paper presents a proof-of-concept for an in-situ smart carbon fibre reinforced plastic (CFRP) composite orbital debris detector that is capable of localising space debris impacts on Earth satellites and measuring the direction and velocity of debris particles. This spacecraft detection system can be used to warn satellites about the impact occurrence and to enhance current Space Surveillance Networks by providing a catalogue of debris objects. The proposed orbital debris detector consists of two thin parallel CFRP composite plates, each instrumented with three piezoelectric transducers embedded into the laminate. The localisation method is based on the measurement of acoustic emissions generated by debris impacts on the CFRP plates, which are processed with the time reversal algorithm. The calculation of the direction of debris particles and their speed are accomplished by determining the arrival time of acquired signals and the speed of waves propagating within each CFRP plate. Experimental results showed accurate estimation of the impact location, direction and velocity, thus demonstrating the potential use of the proposed orbital debris detector in future Earth satellite systems

    Impact source localisation in aerospace composite structures

    Get PDF
    The most commonly encountered type of damage in aircraft composite structures is caused by low-velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these events can cause severe internal material damage that is difficult to detect and may lead to a significant reduction of the structure’s strength and fatigue life. For this reason there is an urgent need to develop structural health monitoring systems able to localise low-velocity impacts in both metallic and composite components as they occur. This article proposes a novel monitoring system for impact localisation in aluminium and composite structures, which is able to determine the impact location in real-time without a-priori knowledge of the mechanical properties of the material. This method relies on an optimal configuration of receiving sensors, which allows linearization of well-known nonlinear systems of equations for the estimation of the impact location. The proposed algorithm is based on the time of arrival identification of the elastic waves generated by the impact source using the Akaike Information Criterion. The proposed approach was demonstrated successfully on both isotropic and orthotropic materials by using a network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the validity of the proposed algorithm, since the impact sources were detected with a high level of accuracy. The proposed impact detection system overcomes current limitations of other methods and can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event

    Acoustic emission localization in composites using the signal power method and embedded transducers

    Get PDF
    This work proposes a novel technique for the localization of low-velocity impacts in composites without a-priori knowledge of the mechanical properties nor the speed of propagating waves, thus overcoming current limitations of existing impact localization methods. The proposed algorithm is based on the estimation of the power of acoustic emissions generated by impacts on a composite plate instrumented with embedded piezo-transducers. The signal power values calculated at sparse sensor locations are interpolated over the sample by using radial basis function networks. The impact coordinates on the specimen surface are estimated by a center-of-gravity method based on the interpolated power values. Experimental tests were performed by using both an instrumented impact hammer and a drop tower. The results obtained showed the validity of the presented approach, which was able to identify the impact locations with high level of accuracy.</p

    Consolidation of surface charging analyses on the Ariel payload dielectrics in the early transfer orbit and L2 space environments

    Get PDF
    Ariel (Atmospheric Remote Sensing Infrared Exoplanet Large Survey) [1] [2] is the fourth Mission (M4) of the ESA’s Cosmic Vision Program 2015-2025, selected in March 2018 and officially adopted in November 2020 by the Agency, whose aim is to characterize the atmospheres of hundreds of diverse exoplanets orbiting nearby different types of stars and to identify the key factors affecting the formation and evolution of planetary systems. The Mission will have a nominal duration of four years and a possible extension of two years at least. Its launch is presently scheduled for mid 2029 from the French Guiana Space Centre in Kourou on board an Ariane 6.2 launcher in a dual launch configuration with Comet Interceptor. The baseline operational orbit of the Ariel is a large amplitude halo orbit around the second Lagrangian (L2) virtual point located along the line joining the Sun and the Earth-Moon system at about 1.5 million km (~236 RE) from the Earth in the anti-Sun direction. Ariel’s halo orbit is designed to be an eclipse-free orbit as it offers the possibility of long uninterrupted observations in a fairly stable environment (thermal, radiation, etc.). An injection trajectory is foreseen with a single passage through the Van Allen radiation belts (LEO, MEO and GEO near-Earth environments). This is approximated by a worst-case half orbit, prior the injection and transfer to L2, with a duration of 10.5 hours, a perigee of 300 km (LEO), an apogee of 64000 km (GEO and beyond), and an inclination close to 0 degrees. During both the injection trajectory and the final orbit around L2, Ariel will encounter and interact mainly with the Sun radiation and the space plasma environment. In L2 the Ariel spacecraft will spend most of its time in the direct solar wind and the Earth’s magnetosheath with passages through the magnetotail. These three environments, along with LEO and GEO, can lead to the build-up of a net electric charge on the spacecraft and payload conductive and dielectric surfaces leading to the risk of Electro Static Discharges (ESD), potentially endangering the whole Payload integrity and telecommunications to Ground

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape
    • …
    corecore