54,458 research outputs found

    Fuzzy Authentication using Rank Distance

    Full text link
    Fuzzy authentication allows authentication based on the fuzzy matching of two objects, for example based on the similarity of two strings in the Hamming metric, or on the similiarity of two sets in the set difference metric. Aim of this paper is to show other models and algorithms of secure fuzzy authentication, which can be performed using the rank metric. A few schemes are presented which can then be applied in different scenarios and applications.Comment: to appear in Cryptography and Physical Layer Security, Lecture Notes in Electrical Engineering, Springe

    Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

    Full text link
    The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as GALAH and the Gaia-ESO survey, will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work we perform the first ever blind chemical tagging experiment, i.e., tagging stars with no known or otherwise discernable associations, on a sample of 714 disc field stars with a number of high quality high resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thought. Our results point to several important conclusions, among them that group finding will be limited strictly to chemical abundance space, e.g. stellar ages, kinematics, colors, temperature and surface gravity do not enhance the detectability of groups. We also demonstrate that in addition to its role in probing the chemical enrichment and kinematic history of the Galactic disc, chemical tagging represents a powerful new stellar age determination technique.Comment: 12 pages, 9 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS

    ESO452-SC11: The lowest mass globular cluster with a potential chemical inhomogeneity

    Full text link
    We present the largest spectroscopic investigation of one of the faintest and least studied stellar clusters of the Milky Way, ESO452-SC11. Using the Anglo-Australian Telescope AAOmega and Keck HIRES spectrographs we have identified 11 members of the cluster and found indications of star-to-star light element abundance variation, primarily using the blue cyanogen (CN) absorption features. From a stellar density profile, we estimate a total cluster mass of (6.8±3.4)×103(6.8\pm3.4)\times10^3 solar masses. This would make ESO452-SC11 the lowest mass cluster with evidence for multiple populations. These data were also used to measure the radial velocity of the cluster (16.7±0.316.7\pm0.3 km s1^{-1}) and confirm that ESO452-SC11 is relatively metal-rich for a globular cluster ([Fe/H]=0.81±0.13=-0.81\pm0.13). All known massive clusters studied in detail show multiple populations of stars each with a different chemical composition, but many low-mass globular clusters appear to be chemically homogeneous. ESO452-SC11 sets a lower mass limit for the multiple stellar population phenomenon.Comment: 13 pages, 11 figures. Accepted for publication in MNRA

    Circlator: automated circularization of genome assemblies using long sequencing reads

    Get PDF
    The assembly of DNA sequence data is undergoing a renaissance thanks to emerging technologies capable of producing reads tens of kilobases long. Assembling complete bacterial and small eukaryotic genomes is now possible, but the final step of circularizing sequences remains unsolved. Here we present Circlator, the first tool to automate assembly circularization and produce accurate linear representations of circular sequences. Using Pacific Biosciences and Oxford Nanopore data, Circlator correctly circularized 26 of 27 circularizable sequences, comprising 11 chromosomes and 12 plasmids from bacteria, the apicoplast and mitochondrion of Plasmodium falciparum and a human mitochondrion. Circlator is available at http://sanger-pathogens.github.io/circlator/

    On the connection of Gamma-rays, Dark Matter and Higgs searches at LHC

    Get PDF
    Motivated by the upcoming Higgs analyzes we investigate the importance of the complementarity of the Higgs boson chase on the low mass WIMP search in direct detection experiments and the gamma-ray emission from the Galactic Center measured by the Fermi-LAT telescope in the context of the SU(3)cSU(3)LU(1)NSU(3)_c\otimes SU(3)_L\otimes U(1)_N. We obtain the relic abundance, thermal cross section, the WIMP-nucleon cross section in the low mass regime and network them with the branching ratios of the Higgs boson in the model. We conclude that the Higgs boson search has a profound connection to the dark matter problem in our model, in particular for the case that (MWIMP<60M_{WIMP} < 60 GeV) the BR(H2H \rightarrow 2 WIMPs) 90\gtrsim 90%. This scenario could explain this plateau of any mild excess regarding the Higgs search as well as explain the gamma-ray emission from the galactic center through the bbˉb\bar{b} channel with a WIMP in the mass range of 25-45 GeV, while still being consistent with the current limits from XENON100 and CDMSII. However, if the recent modest excesses measured at LHC and TEVATRON are confirmed and consistent with a standard model Higgs boson this would imply that MWIMP>60 M_{WIMP} > 60 GeV, consequently ruling out any attempt to explain the Fermi-LAT observations.Comment: 8 pages, 9 figure
    corecore