31 research outputs found

    Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials

    Get PDF
    BACKGROUND: Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. RESULTS: The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25-35 Hz) and to a lesser extent of 80 Hz oscillation. After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25-35 Hz) peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. CONCLUSION: The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Planar covariation of elevation angles in prosthetic gait.

    No full text
    In order to achieve efficacious walking, transfemoral amputees must adapt coordination within both the artificial and the sound lower limb. We analyzed kinematic strategies in amputees using the planar covariation of lower limb segments approach. When the elevation angles of the thigh, shank and foot are plotted one versus the others, they describe a regular loop which lies close to a plane in normal adults' gait. Orientation of this plane changes with increased speed, in relation to mechanical energetic saving. We used an opto-electronic device to record the elevation angles of both limbs' segments of novice and expert transfemoral amputees and compared them to those of control subjects. The statistical structure underlying the distribution of these angles was described by principal component analysis and Fourier transform. The typical elliptic loop was preserved in prosthetic walking, in both limbs in both novice and expert transfemoral amputees. This reflects a specific control over the thigh elevation angle taking into account knowledge of the other elevation angles throughout the gait cycle. The best-fitting plane of faster trials rotates around the long axis of the gait loop with respect to the plane of slower trials for control subjects, and even more for the sound limb of expert amputees. In contrast, plane rotation is very weak or absent for the prosthetic limb. We suggest that these results reveal a centrally commanded compensation strategy.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Multi-segment coordination strategies in choregraphic jump «grand jeté»

    No full text
    SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Rhythmic muscular activation pattern for fast figure-eight movement.

    No full text
    OBJECTIVE: To address the question of how the CNS generates muscle activation patterns for complex gestures, we have chosen to study a figure-eight movement. We hypothesized that the well defined rhythmic aspect of this figure will provide further insights into the temporal features of multi-muscular commands. METHODS: Subjects performed, as fast as possible, figure-eights initiated in the center of the figure with 4 different initial directions and 2 positions of the shoulder. We extracted the temporal modulation of the EMG patterns by calculating conjugate cross-correlation functions. RESULTS: (1) The muscular command was tuned with respect to the rotational direction of the figure-eight, (2) two sets of synergistic muscles acted in a reciprocal mode, and (3) these reciprocal commands presented an invariant temporal correlation with the spatial component of the velocity having the highest frequency. CONCLUSION: Our results suggest that the rhythmic features of certain drawing movements favor the partitioning of the muscles into synergistic groups acting in a reciprocal mode. The inclusion of an individual muscle in one group or the other takes into account the expected number of changes of direction in the movement as a whole. SIGNIFICANCE: Muscular temporal synergies may depend on the rhythmic features of the trajectory.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Weightlessness alters up/down asymmetries in the perception of self-motion

    No full text
    In the present study, we investigated the effect of weightlessness on the ability to perceive and remember self-motion when passing through virtual 3D tunnels that curve in different direction (up, down, left, right). We asked cosmonaut subjects to perform the experiment before, during and after long-duration space flight aboard the International Space Station (ISS), and we manipulated vestibular versus haptic cues by having subjects perform the task either in a rigidly fixed posture with respect to the space station or during free-floating, in weightlessness. Subjects were driven passively at constant speed through the virtual 3D tunnels containing a single turn in the middle of a linear segment, either in pitch or in yaw, in increments of 12.5. After exiting each tunnel, subjects were asked to report their perception of the turn's angular magnitude by adjusting, with a trackball, the angular bend in a rod symbolizing the outside view of the tunnel. We demonstrate that the strong asymmetry between downward and upward pitch turns observed on Earth showed an immediate and significant reduction when free-floating in weightlessness and a delayed reduction when the cosmonauts were firmly in contact with the floor of the station. These effects of weightlessness on the early processing stages (vestibular and optokinetics) that underlie the perception of self-motion did not stem from a change in alertness or any other uncontrolled factor in the ISS, as evidenced by the fact that weightlessness had no effect on the perception of yaw turns. That the effects on the perception of pitch may be partially overcome by haptic cues reflects the fusion of multisensory cues and top-down influences on visual perception. © 2013 Springer-Verlag Berlin Heidelberg.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Optimizing the performances of a P300-based brain-computer interface in ambulatory conditions

    No full text
    Brain-computer interfaces (BCIs) enable their users to interact with their surrounding environment using the activity of their brain only, without activating any muscle. This technology provides severely disabled people with an alternative mean to communicate or control any electric device. On the other hand, BCI applications are more and more dedicated to healthier people, with the aim of giving them access to augmented reality or new rehabilitation tools. As it is noninvasive, light and relatively cheap, electroencephalography (EEG) is the most used acquisition technique to record cerebral activity of the BCI users. However, when using such type of BCI, user movements are likely to provoke motions of the measuring electrodes which can severely damage the EEG quality. Thus, current BCI technology requires that the user sits and performs as little movements as possible. This is of course a strong limitation of BCI for use in ordinary life. Very recently, preliminary studies have been published in the literature and suggest that BCI applications can be realized even in the physically moving context. In this paper, we thoroughly investigate the possibility to develop a P300-based BCI system in ambulatory condition. The study is based on experimental data recorded with seven subjects executing a visual P300 speller-like discrimination task while simultaneously walking at different speeds on a treadmill. It is demonstrated that a P300-based BCI is definitely feasible in such conditions. Different artifact correction methods are described and discussed in detail. To conclude, a recommended approach is given for the development of a real-time application. © 2011 IEEE.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore