38 research outputs found

    Symplectic gaugings and the field-antifield formalism

    Full text link
    We give an example of how conventional gauging methods obstruct a systematic analysis of gauged supergravities. We discuss how the embedding tensor formalism deals with these problems and argue that the gauge algebra related to the embedding tensor formalism is soft, open and reducible. We connect the embedding tensor formalism to the field-antifield (or Batalin-Vilkovisky) formalism, which is the most general formulation known for gauge theories.Comment: Contribution to the Proceedings of the XVIth European Workshop on String Theory in Madrid (June 14-18, 2010), 10 page

    Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge

    Get PDF
    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat and how feedback mechanisms between the ocean and ice shelf geometry have influenced the ice dynamics. To address these questions, we present the first results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent melt rate parameterization demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50 year timescal

    Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice-shelf geometry

    Get PDF
    Despite the potentially detrimental impact of large-scale calving events on the geometry and ice flow of the Antarctic Ice Sheet, little is known about the processes that drive rift formation prior to calving, or what controls the timing of these events. The Brunt Ice Shelf in East Antarctica presents a rare natural laboratory to study these processes, following the recent formation of two rifts, each now exceeding 50 km in length. Here we use a unique 50-years' time series of in-situ and remote sensing observations, together with numerical modelling, to reveal how slow changes in ice shelf geometry over time caused build-up of mechanical tension far upstream of the ice front, and culminated in rift formation and a significant speed-up of the ice shelf. These internal feedbacks, whereby ice shelves generate the very conditions that lead to their own (partial) disintegration are currently missing from ice flow models, which severely limits their ability to accurately predict future sea level rise

    Five decades of strong temporal variability in the flow of Brunt Ice Shelf, Antarctica

    Get PDF
    Data showing velocity changes on the Brunt Ice Shelf (BIS), Antarctica, over the last 55 years are presented and analysed. During this period no large-scale calving events took place and the ice shelf gradually grew in size. Ice flow velocities, however, fluctuated greatly, increasing twofold between 1970 and 2000, then decreasing again to previous levels by 2012 after which velocities started to increase yet again. In the observational period, velocity changes in the order of 10% a−1 have commonly been observed, and currently velocities are increasing at this rate. By modelling the ice flow numerically, we explore potential causes for the observed changes in velocity. We find that a loss of mechanical contact between the BIS and the McDonald Ice Rumples following a local calving event in 1971 would explain both the increase and the subsequent decrease in ice velocities. Other explanations involving enlargement of observed rift structures are discounted as the effects on ice flow are found to be too small and the spatial pattern of velocity change inconsistent with data. The most recent phase of acceleration remains unexplained but may potentially be related to a recent re-activation of a known rift structure within the BIS

    Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica

    Get PDF
    We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day−1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica

    Geometric amplification and suppression of ice-shelf basal melt in West Antarctica

    Get PDF
    Glaciers along the Amundsen Sea coastline in West Antarctica are dynamically adjusting to a change in ice-shelf mass balance that triggered their retreat and speed-up prior to the satellite era. In recent decades, the ice shelves have continued to thin, albeit at a decelerating rate, whilst ice discharge across the grounding lines has been observed to have increased by up to 100 % since the early 1990s. Here, the ongoing evolution of ice-shelf mass balance components is assessed in a high-resolution coupled ice–ocean model that includes the Pine Island, Thwaites, Crosson, and Dotson ice shelves. For a range of idealized ocean-forcing scenarios, the combined evolution of ice-shelf geometry and basal-melt rates is simulated over a 200-year period. For all ice-shelf cavities, a reconfiguration of the 3D ocean circulation in response to changes in cavity geometry is found to cause significant and sustained changes in basal-melt rate, ranging from a 75 % decrease up to a 75 % increase near the grounding lines, irrespective of the far-field forcing. These previously unexplored feedbacks between changes in ice-shelf geometry, ocean circulation, and basal melting have a demonstrable impact on the net ice-shelf mass balance, including grounding-line discharge, at multi-decadal timescales. They should be considered in future projections of Antarctic mass loss alongside changes in ice-shelf melt due to anthropogenic trends in the ocean temperature and salinity

    Modeling the instantaneous response of glaciers after the collapse of the Larsen B Ice Shelf

    Get PDF
    Following the disintegration of the Larsen B Ice Shelf, Antarctic Peninsula, in 2002, regular surveillance of its ∼20 tributary glaciers has revealed a response which is varied and complex in both space and time. The major outlets have accelerated and thinned, smaller glaciers have shown little or no change, and glaciers flowing into the remnant Scar Inlet Ice Shelf have responded with delay. In this study we present the first areawide numerical analysis of glacier dynamics before and immediately after the collapse of the ice shelf, combining new data sets and a state‐of‐the‐art numerical ice flow model. We simulate the loss of buttressing at the grounding line and find a good qualitative agreement between modeled changes in glacier flow and observations. Through this study, we seek to improve confidence in our numerical models and their ability to capture the complex mechanical coupling between floating ice shelves and grounded ice

    Impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers

    Get PDF
    ARISING FROM P. A. Tuckett et al., Nature Communications https://doi.org/10.1038/s41467-019-12039-2 (2019)
    corecore