13,882 research outputs found

    Barium and related stars, and their white-dwarf companions. III. The masses of the white dwarfs

    Full text link
    Masses are one of the most difficult stellar properties to measure. In the case of the white-dwarf companions of Barium stars, the situation is worse. These stars are dim, cool, and difficult to observe via direct methods. However, Ba stars were polluted by the Asymptotic Giant Branch progenitors of these WDs with matter rich in heavy elements, and the properties of their WD companions contain key information about binary interaction processes involving AGB stars and about the slow-neutron-capture(s)-process of nucleosynthesis. We aim to determine accurate and assumption-free masses for the WD companions of as many Ba stars as possible. We want to provide new observational constraints that can help us learn about the formation and evolution of these post-interaction binary systems and about the nucleosynthesis processes that took place in the interiors of their AGB progenitors. We combined archival radial-velocity data with Hipparcos and Gaia astrometry using the software package orvara, a code designed to simultaneously fit a single Keplerian model to any combination of these types of data using a parallel-tempering Markov chain Monte Carlo method. We adopted Gaussian priors for the Ba star masses and for the parallaxes, and assumed uninformative priors for the orbital elements and the WD masses. We determined new orbital inclinations and companion masses for 60 Ba star systems, including a couple of new orbits and several improved orbits for the longest-period systems. We also unravelled a triple system that was not known before and constrained the orbits and the masses of the two companions. (Continued in the manuscript)Comment: Accepted for publication in Astronomy & Astrophysic

    The Brown-dwarf Atmosphere Monitoring (BAM) Project II: Multi-epoch monitoring of extremely cool brown dwarfs

    Full text link
    With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar System planets. To investigate the atmospheres of these newly identified brown dwarfs, we have conducted a pilot study monitoring an initial sample of three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0h to 4.5h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ~2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years later did not note any variability to a 3% upper limit. With an effective temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published to-date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8% and 20.0%, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.Comment: 9 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Discovery of three z>6.5 quasars in the VISTA Kilo-degree Infrared Galaxy (VIKING) survey

    Get PDF
    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z~6.4, a limit set by the use of the z-band and CCD detectors. Only one z>6.4 quasar has been discovered, namely the z=7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z>6.4 quasars in 332 square degrees of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z=6.60, 6.75, and 6.89. The absolute magnitudes are between -26.0 and -25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the MgII emission line in all three objects. The quasars are powered by black holes with masses of ~(1-2)x10^9 M_sun. In our probed redshift range of 6.44<z<7.44 we can set a lower limit on the space density of supermassive black holes of \rho(M_BH>10^9 M_sun) > 1.1x10^(-9) Mpc^(-3). The discovery of three quasars in our survey area is consistent with the z=6 quasar luminosity function when extrapolated to z~7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z=6 to z=7.Comment: 14 pages, 9 figures. Published in Ap

    Switching of Magnetic Moments of Nanoparticles by Surface Acoustic Waves

    Full text link
    We report evidence of the magnetization reversal in nanoparticles by surface acoustic waves (SAWs). The experimental system consists of isolated magnetite nanoparticles dispersed on a piezoelectric substrate. Magnetic relaxation from a saturated state becomes significantly enhanced in the presence of the SAW at a constant temperature of the substrate. The dependence of the relaxation on SAW power and frequency has been investigated. The effect is explained by the effective ac magnetic field generated by the SAW in the nanoparticles.Comment: Accepted in Europhysics Letter
    corecore