7 research outputs found

    An extension of the Kac ring model

    Full text link
    We introduce a unitary dynamics for quantum spins which is an extension of a model introduced by Mark Kac to clarify the phenomenon of relaxation to equilibrium. When the number of spins gets very large, the magnetization satisfies an autonomous equation as function of time with exponentially fast relaxation to the equilibrium magnetization as determined by the microcanonical ensemble. This is proven as a law of large numbers with respect to a class of initial data. The corresponding Gibbs-von Neumann entropy is also computed and its monotonicity in time discussed.Comment: 15 pages, v2 -> v3: minor typographic correctio

    Fluctuation theorems for stochastic dynamics

    Full text link
    Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.Comment: 48 pages, 2 figures. v2: minor changes for consistency with published versio

    Relating the thermodynamic arrow of time to the causal arrow

    Full text link
    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born-Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonic distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.Comment: 10 page

    A NOTE ON THE NON-COMMUTATIVE LAPLACE–VARADHAN INTEGRAL LEMMA

    Get PDF
    We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian H an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables X and Y that do not necessarily commute. By slightly extending a recent paper by Hiai, Mosonyi, Ohno and Petz [10], we prove in general that the free energy is given by a variational principle over the range of the operators X and Y. As in [10], the result is a non-commutative extension of the Laplace–Varadhan asymptotic formula
    corecore