149 research outputs found

    Application of a one-dimensional fuel-oil dilution model coupled with an empirical droplet-to-film formation strategy for predicting in-cylinder oil effects in a direct injection engine

    Get PDF
    Nowadays climate change due to the unnatural increment of green-house effect is one of the most critical environmental issues. In this context, internal combustion engines are still a short - term valuable solution. This is made possible by the study and the development of synthetic or alternative fuels, such e - gasolines and hydrogen. In this context, direct injection is still the most adopted strategy to improve internal combustion engine efficiency. The installation of the injector on the cylinder head may lead to the impact of the fuel on the wall of the cylinder liner. This phenomenon causes lubricant oil dilution, possibly increasing particulate matter emission at low load and abnormal combustions, known as low - speed pre-ignitions, at high load. The present paper aims to evaluate the influence of a set of established key parameters anticipating the effects of lubricant oil - fuel diffusion through a one - dimensional model implemented in Python. The model accounts for the runtime deposition of the fuel film by means of the results of a three - dimensional Computational Fluid Dynamics spray simulation. The model accounts also for the heat and mass transfer between species and the liquid fuel phase change for a representative setup of nowadays injectors. The dilution of a multigrade lubricant oil caused by synthetic fuels under an engine cold start operative condition is evaluated in this work

    Implementation of a multi-zone numerical blow-by model and its integration with cfd simulations for estimating collateral mass and heat fluxes in optical engines

    Get PDF
    Nowadays reducing green-house gas emissions and pushing the fossil fuel savings in the field of light-duty vehicles is compulsory to slow down climate change. To this aim, the use of new combustion modes and dilution strategies to increase the stability of operations rich in diluent is an effective technique to reduce combustion temperatures and heat losses in throttled operations. Since the combustion behavior in those solutions highly differs from that of typical market systems, fundamental analyses in optical engines are mandatory in order to gain a deep understanding of those and to tune new models for improving the mutual support between experiments and simulations. However, it is known that optical accessible engines suffer from significant blow-by collateral flow due to the installation of the optical measure line. Thus, a reliable custom blow-by model capable of being integrated with both mono-dimensional and three-dimensional simulations was developed and validated against experimental data. The model can work for two different configurations: (a) stand-alone, aiming at providing macroscopic data on the ignitable mixture mass loss/recover through the piston rings; (b) combined, in which it is integrated in CFD engine simulations for the local analysis of likely collateral heat release induced by blow-by. Furthermore, once the model was validated, the effect of the engine speed and charge dilution on the blow-by phenomenon in the optical engine were simulated and discussed in the stand-alone mode. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila

    Get PDF
    The identification and study of the cis-regulatory elements that control gene expression are important areas of biological research, but few resources exist to facilitate large-scale bioinformatics studies of cis-regulation in metazoan species. Drosophila melanogaster, with its well-annotated genome, exceptional resources for comparative genomics and long history of experimental studies of transcriptional regulation, represents the ideal system for regulatory bioinformatics. We have merged two existing Drosophila resources, the REDfly database of cis-regulatory modules and the FlyReg database of transcription factor binding sites (TFBSs), into a single integrated database containing extensive annotation of empirically validated cis-regulatory modules and their constituent binding sites. With the enhanced functionality made possible through this integration of TFBS data into REDfly, together with additional improvements to the REDfly infrastructure, we have constructed a one-stop portal for Drosophila cis-regulatory data that will serve as a powerful resource for both computational and experimental studies of transcriptional regulation. REDfly is freely accessible at http://redfly.ccr.buffalo.edu

    REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila

    Get PDF
    The identification and study of the cis-regulatory elements that control gene expression are important areas of biological research, but few resources exist to facilitate large-scale bioinformatics studies of cis-regulation in metazoan species. Drosophila melanogaster, with its well-annotated genome, exceptional resources for comparative genomics and long history of experimental studies of transcriptional regulation, represents the ideal system for regulatory bioinformatics. We have merged two existing Drosophila resources, the REDfly database of cis-regulatory modules and the FlyReg database of transcription factor binding sites (TFBSs), into a single integrated database containing extensive annotation of empirically validated cis-regulatory modules and their constituent binding sites. With the enhanced functionality made possible through this integration of TFBS data into REDfly, together with additional improvements to the REDfly infrastructure, we have constructed a one-stop portal for Drosophila cis-regulatory data that will serve as a powerful resource for both computational and experimental studies of transcriptional regulation. REDfly is freely accessible at http://redfly.ccr.buffalo.edu

    Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)

    Get PDF
    Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2

    Evolutionary Mirages: Selection on Binding Site Composition Creates the Illusion of Conserved Grammars in Drosophila Enhancers

    Get PDF
    The clustering of transcription factor binding sites in developmental enhancers and the apparent preferential conservation of clustered sites have been widely interpreted as proof that spatially constrained physical interactions between transcription factors are required for regulatory function. However, we show here that selection on the composition of enhancers alone, and not their internal structure, leads to the accumulation of clustered sites with evolutionary dynamics that suggest they are preferentially conserved. We simulated the evolution of idealized enhancers from Drosophila melanogaster constrained to contain only a minimum number of binding sites for one or more factors. Under this constraint, mutations that destroy an existing binding site are tolerated only if a compensating site has emerged elsewhere in the enhancer. Overlapping sites, such as those frequently observed for the activator Bicoid and repressor Krüppel, had significantly longer evolutionary half-lives than isolated sites for the same factors. This leads to a substantially higher density of overlapping sites than expected by chance and the appearance that such sites are preferentially conserved. Because D. melanogaster (like many other species) has a bias for deletions over insertions, sites tended to become closer together over time, leading to an overall clustering of sites in the absence of any selection for clustered sites. Since this effect is strongest for the oldest sites, clustered sites also incorrectly appear to be preferentially conserved. Following speciation, sites tend to be closer together in all descendent species than in their common ancestors, violating the common assumption that shared features of species' genomes reflect their ancestral state. Finally, we show that selection on binding site composition alone recapitulates the observed number of overlapping and closely neighboring sites in real D. melanogaster enhancers. Thus, this study calls into question the common practice of inferring “cis-regulatory grammars” from the organization and evolutionary dynamics of developmental enhancers

    Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition

    Get PDF
    The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning, and other early developmental processes; and the zinc-finger protein Zelda (ZLD) plays a key role in their transcriptional activation. To better understand the mechanisms of ZLD activation and the range of its targets, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to map regions bound by ZLD before (mitotic cycle 8), during (mitotic cycle 13), and after (late mitotic cycle 14) the MZT. Although only a handful of genes are transcribed prior to mitotic cycle 10, we identified thousands of regions bound by ZLD in cycle 8 embryos, most of which remain bound through mitotic cycle 14. As expected, early ZLD-bound regions include the promoters and enhancers of genes transcribed at this early stage. However, we also observed ZLD bound at cycle 8 to the promoters of roughly a thousand genes whose first transcription does not occur until the MZT and to virtually all of the thousands of known and presumed enhancers bound at cycle 14 by transcription factors that regulate patterned gene activation during the MZT. The association between early ZLD binding and MZT activity is so strong that ZLD binding alone can be used to identify active promoters and regulatory sequences with high specificity and selectivity. This strong early association of ZLD with regions not active until the MZT suggests that ZLD is not only required for the earliest wave of transcription but also plays a major role in activating the genome at the MZT

    Requirement of Male-Specific Dosage Compensation in Drosophila Females—Implications of Early X Chromosome Gene Expression

    Get PDF
    Dosage compensation equates between the sexes the gene dose of sex chromosomes that carry substantially different gene content. In Drosophila, the single male X chromosome is hypertranscribed by approximately two-fold to effect this correction. The key genes are male lethal and appear not to be required in females, or affect their viability. Here, we show these male lethals do in fact have a role in females, and they participate in the very process which will eventually shut down their function—female determination. We find the male dosage compensation complex is required for upregulating transcription of the sex determination master switch, Sex-lethal, an X-linked gene which is specifically activated in females in response to their two X chromosomes. The levels of some X-linked genes are also affected, and some of these genes are used in the process of counting the number of X chromosomes early in development. Our data suggest that before the female state is set, the ground state is male and female X chromosome expression is elevated. Females thus utilize the male dosage compensation process to amplify the signal which determines their fate

    STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo

    Get PDF
    In many organisms, transcription of the zygotic genome begins during the maternal-to-zygotic transition (MZT), which is characterized by a dramatic increase in global transcriptional activities and coincides with embryonic stem cell differentiation. In Drosophila, it has been shown that maternal morphogen gradients and ubiquitously distributed general transcription factors may cooperate to upregulate zygotic genes that are essential for pattern formation in the early embryo. Here, we show that Drosophila STAT (STAT92E) functions as a general transcription factor that, together with the transcription factor Zelda, induces transcription of a large number of early-transcribed zygotic genes during the MZT. STAT92E is present in the early embryo as a maternal product and is active around the MZT. DNA–binding motifs for STAT and Zelda are highly enriched in promoters of early zygotic genes but not in housekeeping genes. Loss of Stat92E in the early embryo, similarly to loss of zelda, preferentially down-regulates early zygotic genes important for pattern formation. We further show that STAT92E and Zelda synergistically regulate transcription. We conclude that STAT92E, in conjunction with Zelda, plays an important role in transcription of the zygotic genome at the onset of embryonic development

    The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster

    Get PDF
    The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation
    corecore