396,458 research outputs found

    An Introduction to Pervasive Interface Automata

    Get PDF
    Pervasive systems are often context-dependent, component based systems in which components expose interfaces and offer one or more services. These systems may evolve in unpredictable ways, often through component replacement. We present pervasive interface automata as a formalism for modelling components and their composition. Pervasive interface automata are based on the interface automata of Henzinger et al, with several significant differences. We expand their notion of input and output actions to combinations of input, output actions, and callable methods and method calls. Whereas interfaces automata have a refinement relation, we argue the crucial relation in pervasive systems is component replacement, which must include consideration of the services offered by a component and assumptions about the environment. We illustrate pervasive interface autmotata and component replacement with a small case study of a pervasive application for sports predictions

    Phase diagram and phonon-induced backscattering in topological insulator nanowires

    Get PDF
    We present an effective low-energy theory of electron-phonon coupling effects for clean cylindrical topological insulator nanowires. Acoustic phonons are modelled by isotropic elastic continuum theory with stress-free boundary conditions. We take into account the deformation potential coupling between phonons and helical surface Dirac fermions, and also include electron-electron interactions within the bosonization approach. For half-integer values of the magnetic flux ΦB\Phi_B along the wire, the low-energy theory admits an exact solution since a topological protection mechanism then rules out phonon-induced 2kF2k_F-backscattering processes. We determine the zero-temperature phase diagram and identify a regime dominated by superconducting pairing of surface states. As example, we consider the phase diagram of HgTe nanowires. We also determine the phonon-induced electrical resistivity, where we find a quadratic dependence on the flux deviation δΦB\delta\Phi_B from the nearest half-integer value

    Unsupervised learning of overlapping image components using divisive input modulation

    Get PDF
    This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance

    Spin structure of spin-1/2 baryon and spinless meson production amplitudes in photo and hadronic reactions

    Full text link
    The most general spin structures of the spin-1/2 baryon and spinless meson production operator for both photon and nucleon induced reactions are derived from the partial-wave expansions of these reaction amplitudes. The present method provides the coefficients multiplying each spin operator in terms of the partial-wave matrix elements. The result should be useful in studies of these reactions based on partial-wave analyses, especially, when spin observables are considered.Comment: RevTex 34 pages, revised versio
    corecore