17 research outputs found

    Protocol: An updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The foundations for ethylene research were laid many years ago by researchers such as Lizada, Yang and Hoffman. Nowadays, most of the methods developed by them are still being used. Technological developments since then have led to small but significant improvements, contributing to a more efficient workflow. Despite this, many of these improvements have never been properly documented.</p> <p>Results</p> <p>This article provides an updated, integrated set of protocols suitable for the assembly of a complete picture of ethylene biosynthesis, including the measurement of ethylene itself. The original protocols for the metabolites 1-aminocyclopropane-1-carboxylic acid and 1-(malonylamino)cyclopropane-1-carboxylic acid have been updated and downscaled, while protocols to determine <it>in vitro </it>activities of the key enzymes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase have been optimised for efficiency, repeatability and accuracy. All the protocols described were optimised for apple fruit, but have been proven to be suitable for the analysis of tomato fruit as well.</p> <p>Conclusions</p> <p>This work collates an integrated set of detailed protocols for the measurement of components of the ethylene biosynthetic pathway, starting from well-established methods. These protocols have been optimised for smaller sample volumes, increased efficiency, repeatability and accuracy. The detailed protocol allows other scientists to rapidly implement these methods in their own laboratories in a consistent and efficient way.</p

    Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato

    Get PDF
    Background: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. Results: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. Conclusions: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening

    Abscisic acid inhibits germination and indirectly delays ethylene biosynthesis of Beta vulgaris

    No full text
    Ethylene and abscisic acid (ABA) are known to interact during the germination of several species. However, ethylene is not involved during the germination of Beta vulgaris, questioning a possible interaction with ABA. Our results have shown that ABA delays the germination of B. vulgaris in a concentration-dependent manner. By analysing the ethylene biosynthesis pathway, the ethylene release rate was shown to be delayed when ABA is supplemented, most probably due to the slower germination rate. The inverse interaction in which 1-aminocyclopropane-1-carboxylic acid (ACC) affects ABA levels does not seem to occur in B. vulgaris as no changes in ABA content were observed during germination in the presence of ACC at different concentrations. Levels of certain plant growth regulators (ABA, ACC and auxin) were also shown to be much higher in the fruit pericarp compared with the true seed. Presumably the pericarp plays an important role during the germination process of B. vulgaris because it is a physiochemical boundary with drastic differences in hormone levels. Our results clearly show demonstrate that ethylene is not involved during the actual germination of B. vulgaris, and that there is no effect of ethylene on ABA during germination of B. vulgaris

    Ethylene is differentially regulated during sugar beet germination and affects early root growth in a dose-dependent manner

    No full text
    Main conclusion: By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development

    Differential usage of storage carbohydrates in the CAM bromeliad Aechmea &apos;Maya&apos; during acclimation to drought and recovery from dehydration Physiologia Plantarum An International Journal for Plant Biology

    No full text
    CAM requires a substantial investment of resources into storage carbohydrates to account for nocturnal CO 2 uptake, thereby restricting carbohydrate partitioning to other metabolic activities, including dark respiration, growth and acclimation to abiotic stress. Flexible modulation of carbon flow to the different competing sinks under changing environmental conditions is considered a key determinant for the growth, productivity and ecological success of the CAM pathway. The aim of the present study was to examine how shifts in carbohydrate partitioning could assure maintenance of photosynthetic integrity and a positive carbon balance under conditions of increasing water deprivation in CAM species. Measurements of gas exchange, leaf water relations, malate, starch and soluble sugar (glucose, fructose and sucrose) contents were made in leaves of the CAM bromeliad Aechmea &apos;Maya&apos; over a 6-month period of drought and subsequently over a 2-month period of recovery from drought. Results indicated that short-term influences of water stress were minimized by elevating the level of respiratory recycling, and carbohydrate pools were maintained at the expense of export for growth while providing a comparable nocturnal carbon gain to that in well-watered control plants. Longer term drought resulted in a disproportionate depletion of key carbohydrate reserves. Sucrose, which was of minor importance for providing substrate for the dark reactions under well-watered conditions, became the major source of carbohydrate for nocturnal carboxylation as drought progressed. Flexibility in terms of the major carbohydrate source used to sustain dark CO 2 uptake is therefore considered a crucial factor in meeting the carbon and energy demands under limiting environmental conditions. Recovery from CAM-idling was found to be dependent on the restoration of the starch pool, which was used predominantly for provision of substrate for nocturnal carboxylation, while net carbon export was limited. The conservation of starch for the nocturnal reactions might be adaptive with regard to responding efficiently to a return of water stress. Abbreviations -PEP, phosphoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase; RWC, relative water content
    corecore