8,452 research outputs found
Nonlinear Relaxation in Population Dynamics
We analyze the nonlinear relaxation of a complex ecosystem composed of many
interacting species. The ecological system is described by generalized
Lotka-Volterra equations with a multiplicative noise. The transient dynamics is
studied in the framework of the mean field theory and with random interaction
between the species. We focus on the statistical properties of the asymptotic
behaviour of the time integral of the i-th population and on the distribution
of the population and of the local field.Comment: 11 pages, 4 figures, in press in Int. Journal of Fractals (2001
Selective writing and read-out of a register of static qubits
We propose a setup comprising an arbitrarily large array of static qubits
(SQs), which interact with a flying qubit (FQ). The SQs work as a quantum
register, which can be written or read-out by means of the FQ through quantum
state transfer (QST). The entire system, including the FQ's motional degrees of
freedom, behaves quantum mechanically. We demonstrate a strategy allowing for
selective QST between the FQ and a single SQ chosen from the register. This is
achieved through a perfect mirror located beyond the SQs and suitable
modulation of the inter-SQ distances.Comment: 14 pages, 4 figure
GRB Flares: UV/Optical Flaring (Paper I)
We present a new algorithm for the detection of flares in gamma-ray burst
(GRB) light curves and use this algorithm to detect flares in the UV/optical.
The algorithm makes use of the Bayesian Information Criterion (BIC) to analyze
the residuals of the fitted light curve, removing all major features, and to
determine the statistically best fit to the data by iteratively adding
additional `breaks' to the light curve. These additional breaks represent the
individual components of the detected flares: T_start, T_stop, and T_peak. We
present the detection of 119 unique flaring periods detected by applying this
algorithm to light curves taken from the Second Swift Ultraviolet/Optical
Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves
and found episodes of flaring in 68 of the light curves. For those light curves
with flares, we find an average number of ~2 flares per GRB. Flaring is
generally restricted to the first 1000 seconds of the afterglow, but can be
observed and detected beyond 10^5 seconds. More than 80% of the flares detected
are short in duration with Delta t/t of < 0.5. Flares were observed with flux
ratios relative to the underlying light curve of between 0.04 to 55.42. Many of
the strongest flares were also seen at greater than 1000 seconds after the
burst.Comment: Submitted to ApJ. 20 pages (including 8 figures and 1 table
An Estimation of the Gamma-Ray Burst Afterglow Apparent Optical Brightness Distribution Function
By using recent publicly available observational data obtained in conjunction
with the NASA Swift gamma-ray burst mission and a novel data analysis
technique, we have been able to make some rough estimates of the GRB afterglow
apparent optical brightness distribution function. The results suggest that 71%
of all burst afterglows have optical magnitudes with mR < 22.1 at 1000 seconds
after the burst onset, the dimmest detected object in the data sample. There is
a strong indication that the apparent optical magnitude distribution function
peaks at mR ~ 19.5. Such estimates may prove useful in guiding future plans to
improve GRB counterpart observation programs. The employed numerical techniques
might find application in a variety of other data analysis problems in which
the intrinsic distributions must be inferred from a heterogeneous sample.Comment: 15 pages including 2 tables and 7 figures, accepted for publication
in Ap
Invariant measures on multimode quantum Gaussian states
We derive the invariant measure on the manifold of multimode quantum Gaussian
states, induced by the Haar measure on the group of Gaussian unitary
transformations. To this end, by introducing a bipartition of the system in two
disjoint subsystems, we use a parameterization highlighting the role of
nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize
quantum entanglement across the given bipartition. A finite measure is then
obtained by imposing a physically motivated energy constraint. By averaging
over the local degrees of freedom we finally derive the invariant distribution
of the symplectic eigenvalues in some cases of particular interest for
applications in quantum optics and quantum information.Comment: 17 pages, comments are welcome. v2: presentation improved and typos
corrected. Close to the published versio
Identification of Test Structures for Reduced Order Modeling of the Squeeze Film Damping in Mems
In this study the dynamic behaviour of perforated microplates oscillating
under the effect of squeeze film damping is analyzed. A numerical approach is
adopted to predict the effects of damping and stiffness transferred from the
surrounding ambient air to oscillating structures ; the effect of hole's cross
section and plate's extension is observed. Results obtained by F.E.M. models
are compared with experimental measurements performed by an optical
interferometric microscope.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Mesoscopic continuous and discrete channels for quantum information transfer
We study the possibility of realizing perfect quantum state transfer in
mesoscopic devices. We discuss the case of the Fano-Anderson model extended to
two impurities. For a channel with an infinite number of degrees of freedom, we
obtain coherent behavior in the case of strong coupling or in weak coupling
off-resonance. For a finite number of degrees of freedom, coherent behavior is
associated to weak coupling and resonance conditions
Amendable Gaussian channels:restoring entanglement via a unitary filter
We show that there exist Gaussian channels which are amendable. A channel is
amendable if when applied twice is entanglement breaking while there exists a
unitary filter such that, when interposed between the first and second action
of the map, prevents the global transformation from being entanglement breaking
[Phys. Rev. A 86, 052302 (2012)]. We find that, depending on the structure of
the channel, the unitary filter can be a squeezing transformation or a phase
shift operation. We also propose two realistic quantum optics experiments where
the amendability of Gaussian channels can be verified by exploiting the fact
that it is sufficient to test the entanglement breaking properties of two mode
Gaussian channels on input states with finite energy (which are not maximally
entangled).Comment: 9 pages, 6 figure
- …