2,520 research outputs found

    The Wehrl entropy has Gaussian optimizers

    Full text link
    We determine the minimum Wehrl entropy among the quantum states with a given von Neumann entropy, and prove that it is achieved by thermal Gaussian states. This result determines the relation between the von Neumann and the Wehrl entropies. The key idea is proving that the quantum-classical channel that associates to a quantum state its Husimi Q representation is asymptotically equivalent to the Gaussian quantum-limited amplifier with infinite amplification parameter. This equivalence also permits to determine the p->q norms of the aforementioned quantum-classical channel in the two particular cases of one mode and p=q, and prove that they are achieved by thermal Gaussian states. The same equivalence permits to prove that the Husimi Q representation of a one-mode passive state (i.e. a state diagonal in the Fock basis with eigenvalues decreasing as the energy increases) majorizes the Husimi Q representation of any other one-mode state with the same spectrum, i.e. it maximizes any convex functional.Comment: Proof extended to multimode state

    Uncertainty relations with quantum memory for the Wehrl entropy

    Get PDF
    We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics

    New lower bounds to the output entropy of multi-mode quantum Gaussian channels

    Get PDF
    We prove that quantum thermal Gaussian input states minimize the output entropy of the multi-mode quantum Gaussian attenuators and amplifiers that are entanglement breaking and of the multi-mode quantum Gaussian phase contravariant channels among all the input states with a given entropy. This is the first time that this property is proven for a multi-mode channel without restrictions on the input states. A striking consequence of this result is a new lower bound on the output entropy of all the multi-mode quantum Gaussian attenuators and amplifiers in terms of the input entropy. We apply this bound to determine new upper bounds to the communication rates in two different scenarios. The first is classical communication to two receivers with the quantum degraded Gaussian broadcast channel. The second is the simultaneous classical communication, quantum communication and entanglement generation or the simultaneous public classical communication, private classical communication and quantum key distribution with the Gaussian quantum-limited attenuator

    The conditional entropy power inequality for quantum additive noise channels

    Get PDF
    We prove the quantum conditional Entropy Power Inequality for quantum additive noise channels. This inequality lower bounds the quantum conditional entropy of the output of an additive noise channel in terms of the quantum conditional entropies of the input state and the noise when they are conditionally independent given the memory. We also show that this conditional Entropy Power Inequality is optimal in the sense that we can achieve equality asymptotically by choosing a suitable sequence of Gaussian input states. We apply the conditional Entropy Power Inequality to find an array of information-theoretic inequalities for conditional entropies which are the analogues of inequalities which have already been established in the unconditioned setting. Furthermore, we give a simple proof of the convergence rate of the quantum Ornstein-Uhlenbeck semigroup based on Entropy Power Inequalities.Comment: 26 pages; updated to match published versio

    The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have Gaussian Maximizers

    Get PDF
    We determine the p->q norms of the Gaussian one-mode quantum-limited attenuator and amplifier and prove that they are achieved by Gaussian states, extending to noncommutative probability the seminal theorem "Gaussian kernels have only Gaussian maximizers" (Lieb in Invent Math 102(1):179-208, 1990). The quantum-limited attenuator and amplifier are the building blocks of quantum Gaussian channels, which play a key role in quantum communication theory since they model in the quantum regime the attenuation and the noise affecting any electromagnetic signal. Our result is crucial to prove the longstanding conjecture stating that Gaussian input states minimize the output entropy of one-mode phase-covariant quantum Gaussian channels for fixed input entropy. Our proof technique is based on a new noncommutative logarithmic Sobolev inequality, and it can be used to determine the p->q norms of any quantum semigroup.Comment: Annales Henri Poincar\'e (2018

    Experiments testing macroscopic quantum superpositions must be slow

    Get PDF
    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.Comment: 12 pages, 1 figur

    Classical capacity of Gaussian thermal memory channels

    Full text link
    The classical capacity of phase-invariant Gaussian channels has been recently determined under the assumption that such channels are memoryless. In this work we generalize this result by deriving the classical capacity of a model of quantum memory channel, in which the output states depend on the previous input states. In particular we extend the analysis of [C. Lupo, et al., PRL and PRA (2010)] from quantum limited channels to thermal attenuators and thermal amplifiers. Our result applies in many situations in which the physical communication channel is affected by nonzero memory and by thermal noise.Comment: 14 pages, 8 figure

    Passive states optimize the output of bosonic Gaussian quantum channels

    Full text link
    An ordering between the quantum states emerging from a single mode gauge-covariant bosonic Gaussian channel is proven. Specifically, we show that within the set of input density matrices with the same given spectrum, the element passive with respect to the Fock basis (i.e. diagonal with decreasing eigenvalues) produces an output which majorizes all the other outputs emerging from the same set. When applied to pure input states, our finding includes as a special case the result of A. Mari, et al., Nat. Comm. 5, 3826 (2014) which implies that the output associated to the vacuum majorizes the others

    Gaussian states minimize the output entropy of one-mode quantum Gaussian channels

    Full text link
    We prove the longstanding conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the Entropy Power Inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p->q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel

    Gaussian States Minimize the Output Entropy of the One-Mode Quantum Attenuator

    Full text link
    We prove that Gaussian thermal input states minimize the output von Neumann entropy of the one-mode Gaussian quantum-limited attenuator for fixed input entropy. The Gaussian quantum-limited attenuator models the attenuation of an electromagnetic signal in the quantum regime. The Shannon entropy of an attenuated real-valued classical signal is a simple function of the entropy of the original signal. A striking consequence of energy quantization is that the output von Neumann entropy of the quantum-limited attenuator is no more a function of the input entropy alone. The proof starts from the majorization result of De Palma et al., IEEE Trans. Inf. Theory 62, 2895 (2016), and is based on a new isoperimetric inequality. Our result implies that geometric input probability distributions minimize the output Shannon entropy of the thinning for fixed input entropy. Moreover, our result opens the way to the multimode generalization, that permits to determine both the triple trade-off region of the Gaussian quantum-limited attenuator and the classical capacity region of the Gaussian degraded quantum broadcast channel
    • …
    corecore