9 research outputs found

    Serine phosphorylation regulates paxillin turnover during cell migration

    Get PDF
    BACKGROUND: Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. RESULTS: We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. CONCLUSION: Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility

    A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation

    No full text
    Both F10 and BL6 sublines of B16 mouse melanoma cells are metastatic after intravenous injection, but only BL6 cells are metastatic after subcutaneous injection. Retrotransposon insertion was found to produce an N–terminally truncated form (Δγ1) of the B56γ1 regulatory subunit isoform of protein phosphatase (PP) 2A in BL6 cells, but not in F10 cells. We found an interaction of paxillin with PP2A C and B56γ subunits by co-immunoprecipitation. B56γ1 co-localized with paxillin at focal adhesions, suggesting a role for this isoform in targeting PP2A to paxillin. In this regard, Δγ1 behaved similarly to B56γ1. However, the Δγ1-containing PP2A heterotrimer was insufficient for the dephosphorylation of paxillin. Transfection with Δγ1 enhanced paxillin phosphorylation on serine residues and recruitment into focal adhesions, and cell spreading with an actin network. In addition, Δγ1 rendered F10 cells as highly metastatic as BL6 cells. These results suggest that mutations in PP2A regulatory subunits may cause malignant progression

    Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines

    No full text
    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells

    Interstitial leukocyte migration and immune function.

    No full text
    Contains fulltext : 69646.pdf (publisher's version ) (Closed access)The trafficking of leukocytes into and within lymphoid and peripheral tissues is central to immune cell development, immunosurveillance and effector function. Interstitial leukocyte trafficking is the result of amoeboid polarization and migration, guided by soluble or tissue-bound chemoattractant signals for positioning and local arrest. In contrast to other migration modes, amoeboid movement is particularly suited for scanning cellular networks and tissues. Here, we review mechanisms of leukocyte migration and sensing involved in diapedesis, tissue-based interstitial migration and egress, immune cell positioning in inflammation, and emerging therapeutic interference strategies

    Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype

    No full text
    corecore