340 research outputs found

    Graded Contractions of Affine Kac-Moody Algebras

    Full text link
    The method of graded contractions, based on the preservation of the automorphisms of finite order, is applied to the affine Kac-Moody algebras and their representations, to yield a new class of infinite dimensional Lie algebras and representations. After the introduction of the horizontal and vertical gradings, and the algorithm to find the horizontal toroidal gradings, I discuss some general properties of the graded contractions, and compare them with the In\"on\"u-Wigner contractions. The example of A^2\hat A_2 is discussed in detail.Comment: 23 pages, Ams-Te

    On Deformations and Contractions of Lie Algebras

    No full text
    In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras

    Graded contractions of bilinear invariant forms of Lie algebras

    Full text link
    We introduce a new construction of bilinear invariant forms on Lie algebras, based on the method of graded contractions. The general method is described and the Z2\Bbb Z_2-, Z3\Bbb Z_3-, and Z2Z2\Bbb Z_2\otimes\Bbb Z_2-contractions are found. The results can be applied to all Lie algebras and superalgebras (finite or infinite dimensional) which admit the chosen gradings. We consider some examples: contractions of the Killing form, toroidal contractions of su(3)su(3), and we briefly discuss the limit to new WZW actions.Comment: 15 page

    Casimir invariants for the complete family of quasi-simple orthogonal algebras

    Full text link
    A complete choice of generators of the center of the enveloping algebras of real quasi-simple Lie algebras of orthogonal type, for arbitrary dimension, is obtained in a unified setting. The results simultaneously include the well known polynomial invariants of the pseudo-orthogonal algebras so(p,q)so(p,q), as well as the Casimirs for many non-simple algebras such as the inhomogeneous iso(p,q)iso(p,q), the Newton-Hooke and Galilei type, etc., which are obtained by contraction(s) starting from the simple algebras so(p,q)so(p,q). The dimension of the center of the enveloping algebra of a quasi-simple orthogonal algebra turns out to be the same as for the simple so(p,q)so(p,q) algebras from which they come by contraction. The structure of the higher order invariants is given in a convenient "pyramidal" manner, in terms of certain sets of "Pauli-Lubanski" elements in the enveloping algebras. As an example showing this approach at work, the scheme is applied to recovering the Casimirs for the (3+1) kinematical algebras. Some prospects on the relevance of these results for the study of expansions are also given.Comment: 19 pages, LaTe

    Central extensions of the families of quasi-unitary Lie algebras

    Get PDF
    The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families of algebras is given.Comment: 23 pages. Latex2e fil

    Possible contractions of quantum orthogonal groups

    Full text link
    Possible contractions of quantum orthogonal groups which correspond to different choices of primitive elements of Hopf algebra are considered and all allowed contractions in Cayley--Klein scheme are obtained. Quantum deformations of kinematical groups have been investigated and have shown that quantum analog of (complex) Galilei group G(1,3) do not exist in our scheme.Comment: 10 pages, Latex. Report given at XXIII Int. Colloquium on Group Theoretical Methods in Physics, July 31- August 5, 2000, Dubna (Russia

    On the electrodynamics of moving bodies at low velocities

    Get PDF
    We discuss the seminal article in which Le Bellac and Levy-Leblond have identified two Galilean limits of electromagnetism, and its modern implications. We use their results to point out some confusion in the literature and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We retrieve Le Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a 5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields. We discuss various applications and experiments, such as in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, superconductivity, continuous media, etc. Much of the current technology where waves are not taken into account, is actually based on Galilean electromagnetism
    corecore