80 research outputs found
HPV infection and triple-negative breast cancers: an Italian case-control study
Background: Breast cancer is one of the most important neoplasia among women. To reduce its incidence and
mortality impact it would be desirable to early identify risk factors associated with its development. It was recently suggested that biological agents could be the etiological cause, particularly Human Papilloma Virus (HPV). No specific relationship with different breast cancer types has been demonstrated until now. In particular, the triple-negative breast cancer (TNBC), characterized by a receptor negative pattern (ER/PgR/HER2–negative) and poor prognosis, can represent one of the most relevant clinical and public health priority in terms of observational research.
Findings: Aim of the study was to evaluate the HPV-positivity prevalence in two breast cancer series (TNBC
vs. non-TNBC) in Northern Sardinia, Italy. The sample size of each group was represented by 40 formalin-fixed
and paraffin-embedded specimens. The mean age was 60.3 years. The majority of the cancers were ductal
(84%). The grading distribution was different: G2 was the most prevalent grade in the non-TNBC series, whereas
G3 was the most frequent in the TNBC series (70% and 72%, respectively). Six biological samples were HPV-positive
(7.5%): the positivity was assessed only in the TNBC group (15%; p-value: 0.026). The isolated genotypes were: 16, 31,
45, 52, 6, and 66. Only one co-infection was found (i.e., HPV-6 and -66).
Conclusions: The prevalence of HPV-positivity in TNBC specimens was 15%. On the basis of its carcinogenetic ability, an etiological role in the pathogenesis of the cancer could be supposed. This association should be confirmed with longitudinal studies to better assess the role of the HPV infection in TNBC and non-TNBC tumors
Analysis of PIK3CA mutations and activation pathways in <i>triple negative</i> breast cancer
Background: Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.
Materials and Methods: PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.
Results: PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.
Conclusions: Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies
Antiproliferative and proapoptotic effects of Inula viscosa extract on Burkitt lymphoma cell line.
Burkitt lymphoma is a very aggressive B-cell non-Hodgkin lymphoma. Although remarkable progress has been made in the therapeutic scenario for patients with Burkitt lymphoma, search and development of new effective anticancer agents to improve patient outcome and minimize toxicity has become an urgent issue. In this study, the antitumoral activity of Inula viscosa, a traditional herb obtained from plants collected on the Asinara Island, Italy, was evaluated in order to explore potential antineoplastic effects of its metabolites on Burkitt lymphoma. Raji human cell line was treated with increasing Inula viscosa extract concentration for cytotoxicity screening and subsequent establishment of cell cycle arrest and apoptosis. Moreover, gene expression profiles were performed to identify molecular mechanisms involved in the anticancer activities of this medical plant. The Inula viscosa extract exhibited powerful antiproliferative and cytotoxic activities on Raji cell line, showing a dose- and time-dependent decrease in cell viability, obtained by cell cycle arrest in the G2/M phase and an increase in cell apoptosis. The treatment with Inula viscosa caused downregulation of genes involved in cell cycle and proliferation (c-MYC, CCND1) and inhibition of cell apoptosis (BCL2, BCL2L1, BCL11A). The Inula viscosa extract causes strong anticancer effects on Burkitt lymphoma cell line. The molecular mechanisms underlying such antineoplastic activity are based on targeting and downregulation of genes involved in cell cycle and apoptosis. Our data suggest that Inula viscosa natural metabolites should be further exploited as potential antineoplastic agents against Burkitt lymphoma
Forkhead box M1B is a determinant of rat susceptibility to hepatocarcinogenesis and sustains ERK activity in human HCC
Background and aim: Previous studies indicate unrestrained cell cycle progression in liver lesions from hepatocarcinogenesis-susceptible Fisher 344 (F344) rats and a block of G1–S transition in corresponding lesions from resistant Brown Norway (BN) rats. Here, the role of the Forkhead box M1B (FOXM1) gene during hepatocarcinogenesis in both rat models and human hepatocellular carcinoma (HCC) was assessed.
Methods and results: Levels of FOXM1 and its targets were determined by immunoprecipitation and real-time PCR analyses in rat and human samples. FOXM1 function was investigated by either FOXM1 silencing or overexpression in human HCC cell lines. Activation of FOXM1 and its targets (Aurora Kinose A, Cdc2, cyclin B1, Nek2) occurred earlier and was most pronounced in liver lesions from F344 than BN rats, leading to the highest number of Cdc2–cyclin B1 complexes (implying the highest G2–M transition) in F344 rats. In human HCC, the level of FOXM1 progressively increased from surrounding non-tumorous livers to HCC, reaching the highest levels in tumours with poorer prognosis (as defined by patients’ length of survival). Furthermore, expression levels of FOXM1 directly correlated with the proliferation index, genomic instability rate and microvessel density, and inversely with apoptosis. FOXM1 upregulation was due to extracellular signal-regulated kinase (ERK) and glioblastoma-associated oncogene 1 (GLI1) combined activity, and its overexpression resulted in increased proliferation and angiogenesis and reduced apoptosis in human HCC cell lines. Conversely, FOXM1 suppression led to decreased ERK activity, reduced proliferation and angiogenesis, and massive apoptosis of human HCC cell lines.
Conclusions: FOXM1 upregulation is associated with the acquisition of a susceptible phenotype in rats and influences human HCC development and prognosis
Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement
Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site. CBD actions on β-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARγ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARγ, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported
Beta-Blocker Use in Older Hospitalized Patients Affected by Heart Failure and Chronic Obstructive Pulmonary Disease: An Italian Survey From the REPOSI Register
Beta (β)-blockers (BB) are useful in reducing morbidity and mortality in patients with heart failure (HF) and concomitant chronic obstructive pulmonary disease (COPD). Nevertheless, the use of BBs could induce bronchoconstriction due to β2-blockade. For this reason, both the ESC and GOLD guidelines strongly suggest the use of selective β1-BB in patients with HF and COPD. However, low adherence to guidelines was observed in multiple clinical settings. The aim of the study was to investigate the BBs use in older patients affected by HF and COPD, recorded in the REPOSI register. Of 942 patients affected by HF, 47.1% were treated with BBs. The use of BBs was significantly lower in patients with HF and COPD than in patients affected by HF alone, both at admission and at discharge (admission, 36.9% vs. 51.3%; discharge, 38.0% vs. 51.7%). In addition, no further BB users were found at discharge. The probability to being treated with a BB was significantly lower in patients with HF also affected by COPD (adj. OR, 95% CI: 0.50, 0.37-0.67), while the diagnosis of COPD was not associated with the choice of selective β1-BB (adj. OR, 95% CI: 1.33, 0.76-2.34). Despite clear recommendations by clinical guidelines, a significant underuse of BBs was also observed after hospital discharge. In COPD affected patients, physicians unreasonably reject BBs use, rather than choosing a β1-BB. The expected improvement of the BB prescriptions after hospitalization was not observed. A multidisciplinary approach among hospital physicians, general practitioners, and pharmacologists should be carried out for better drug management and adherence to guideline recommendations
Prescription appropriateness of anti-diabetes drugs in elderly patients hospitalized in a clinical setting: evidence from the REPOSI Register
Diabetes is an increasing global health burden with the highest prevalence (24.0%) observed in elderly people. Older diabetic adults have a greater risk of hospitalization and several geriatric syndromes than older nondiabetic adults. For these conditions, special care is required in prescribing therapies including anti- diabetes drugs. Aim of this study was to evaluate the appropriateness and the adherence to safety recommendations in the prescriptions of glucose-lowering drugs in hospitalized elderly patients with diabetes. Data for this cross-sectional study were obtained from the REgistro POliterapie-Società Italiana Medicina Interna (REPOSI) that collected clinical information on patients aged ≥ 65 years acutely admitted to Italian internal medicine and geriatric non-intensive care units (ICU) from 2010 up to 2019. Prescription appropriateness was assessed according to the 2019 AGS Beers Criteria and anti-diabetes drug data sheets.Among 5349 patients, 1624 (30.3%) had diagnosis of type 2 diabetes. At admission, 37.7% of diabetic patients received treatment with metformin, 37.3% insulin therapy, 16.4% sulfonylureas, and 11.4% glinides. Surprisingly, only 3.1% of diabetic patients were treated with new classes of anti- diabetes drugs. According to prescription criteria, at admission 15.4% of patients treated with metformin and 2.6% with sulfonylureas received inappropriately these treatments. At discharge, the inappropriateness of metformin therapy decreased (10.2%, P < 0.0001). According to Beers criteria, the inappropriate prescriptions of sulfonylureas raised to 29% both at admission and at discharge. This study shows a poor adherence to current guidelines on diabetes management in hospitalized elderly people with a high prevalence of inappropriate use of sulfonylureas according to the Beers criteria
Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both
Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF.
Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death.
Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009).
Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population
Chemoprevention of hepatocarcinogenesis: <i>S</i>-adenosyl-<sup>L</sup>-methionine
Accumulation of genetic changes characterizes the progression of cells, initiated by carcinogens, to full malignancy. Various epigenetic mechanisms, such as high polyamine synthesis, aberrant DNA methylation, and production of reactive oxygen species, may favor this process by stimulating growth and inducing DNA damage. We observed a decrease in S-adenosyl-L-methionine (SAM) content in the liver, associated with DNA hypomethylation in rat liver, during the development of preneoplastic foci, and in neoplastic nodules and hepatocellular carcinomas, induced in diethylnitrosamine-initiated rats by “resistant hepatocyte” (RH) protocol. Reconstitution of the methyl donor level in the liver by SAM administration inhibits growth and induces phenotypic reversion and apoptosis of preneoplastic cells. A 6-month SAM treatment results in a sharp and persistent decrease in development of neoplastic nodules, suggesting a long duration of SAM chemopreventive effect. Various observations support the suggestion of a role of DNA methylation in chemoprevention by SAM: (1) Exogenous SAM reconstitutes the SAM pool in preneoplastic and neoplastic liver lesions. (2) DNA methylation is positively correlated with SAM:S-adenosylhomocysteine (SAH) ratio in these lesions. (3) 5-Azacytidine, a DNA methyltransferase inhibitor, inhibits chemoprevention by SAM. (4) c-Ha-ras, c-Ki-ras, and c-myc are hypomethylated and overexpressed in preneoplastic liver. Their expression is inversely correlated with SAM:SAH ratio in SAM-treated rats. (5) S-adenosyl-L-methionine treatment results in overall DNA methylation and partial methylation of these genes. Other possible mechanisms of SAM treatment include inhibition of polyamine synthesis, linked to partial transformation of SAM into 5′-methylthioadenosine (MTA), and antioxidant and antifibrogenic activities of both SAM and MTA
- …