3,268 research outputs found

    Xylem plasticity in Pinus pinaster and Quercus ilex growing at sites with different water availability in the Mediterranean region: relations between Intra-Annual Density Fluctuations and environmental conditions.

    Get PDF
    Fluctuations in climatic conditions during the growing season are recorded in Mediterranean tree-rings and often result in intra-annual density fluctuations (IADFs). Dendroecology and quantitative wood anatomy analyses were used to characterize the relations between the variability of IADF traits and climatic drivers in Pinus pinaster Aiton and Quercus ilex L. growing at sites with different water availability on the Elba island in Central Italy. Our results showed that both species present high xylem plasticity resulting in the formation of L-type IADFs (L-IADFs), consisting of earlywood-like cells in latewood. The occurrence of such IADFs was linked to rain events following periods of summer drought. The formation of L-IADFs in both species increased the hydraulic conductivity late in the growing season, due to their larger lumen area in comparison to "true latewood". The two species expressed greater similarity under arid conditions, as unfavorable climates constrained trait variation. Wood density, measured as the percentage of cell walls over total xylem area, IADF frequency, as well as conduit lumen area and vessel frequency, specifically in the hardwood species, proved to be efficient proxies to encode climate signals recorded in the xylem. The response of these anatomical traits to climatic variations was found to be species- and site-specific

    Comparing Methods for the Analysis of δ 13C in Falanghina Grape Must from Different Pedoclimatic Conditions

    Get PDF
    Agroforestry applications in viticulture are considered a promising strategy to improve vine water status by mitigating the threats of increasing drought due to climate change. The analysis of δ13 C is often used in viticulture to understand vine water use. In this study, the analysis of δ13 C was performed on the must of Falanghina grapevines growing in different pedoclimatic conditions. The aim was to compare the results obtained by the application of two different methodologies, using the whole must or extracted sugars as the matrix. The results showed that the δ13 C values obtained by applying the two methodologies were comparable in all analyzed vineyards independently from the pedoclimatic conditions. Indeed, the proposed method of extraction of the δ13 C on the must as a whole can be both cost-and time-saving for the analysis. This is valuable, considering that the δ13 C of must is becoming more and more used as indicator of vines’ water use. Therefore, the possibility to utilize a simplified method of extraction would enhance the application of the δ13 C at a larger scale to evaluate vine adaptation in the context of climate-change-driven increases in drought

    Leaf Anatomy and Photochemical Behaviour of Solanum lycopersicum

    Get PDF
    Plants can be exposed to ionising radiation not only in Space but also on Earth, due to specific technological applications or after nuclear disasters. The response of plants to ionising radiation depends on radiation quality/quantity and/or plant characteristics. In this paper, we analyse some growth traits, leaf anatomy, and ecophysiological features of plants of Solanum lycopersicum L. “Microtom” grown from seeds irradiated with increasing doses of X-rays (0.3, 10, 20, 50, and 100 Gy). Both juvenile and compound leaves from plants developed from irradiated and control seeds were analysed through light and epifluorescence microscopy. Digital image analysis allowed quantifying anatomical parameters to detect the occurrence of signs of structural damage. Fluorescence parameters and total photosynthetic pigment content were analysed to evaluate the functioning of the photosynthetic machinery. Radiation did not affect percentage and rate of seed germination. Plants from irradiated seeds accomplished the crop cycle and showed a more compact habitus. Dose-depended tendencies of variations occurred in phenolic content, while other leaf anatomical parameters did not show distinct trends after irradiation. The sporadic perturbations of leaf structure, observed during the vegetative phase, after high levels of radiation were not so severe as to induce any significant alterations in photosynthetic efficiency

    Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization

    Get PDF
    Callistemon citrinus and Viburnum lucidum are very appreciated and widespread ornamental shrubs for their abundant flowering and/or brilliant foliage. The intrinsic tolerance to drought/salinity supports their use in urban areas and in xeriscaping. Despite adaptive responses of these ornamental species to sodium chloride (NaCl) have been extensively explored, little is known on the effects of other salt solution, yet iso-osmotic, on their growth, mineral composition and metabolism. The present research aimed to assess responses at the biochemical, physiological and anatomical levels to iso-osmotic salt solutions of NaCl and CaCl2 to discriminate the effects of osmotic stress and ion toxicity. The two ornamental species developed different salt-tolerance mechanisms depending on the salinity sources. The growth parameters and biomass production decreased under salinization in both ornamental species, independently of the type of salt, with a detrimental effect of CaCl2 on C. citrinus. The adaptive mechanisms adopted by the two ornamental species to counteract the NaCl salinity were similar, and the decline in growth was mostly related to stomatal limitations of net CO2 assimilation rate, together with the reduction in leaf chlorophyll content (SPAD index). The stronger reduction of C. citrinus growth compared to V. lucidum, was due to an exacerbated reduction in net photosynthetic rate, driven by both stomatal and non stomatal limitations. In similar conditions, V. lucidum exhibited other additional adaptive response, such as modification in leaf functional anatomical traits, mostly related to the reduction in the stomata size allowing plants a better control of stomata opening than in C. citrinus. However, C. citrinus plants displayed an increased ability to retain higher Cl- levels in leaves than in roots under CaCl2 salinity compared to V. lucidum, thus, indicating a further attempt to counteract chloride toxicity through an increased vacuolar compartmentalization and to take advantages of them as chip osmotica
    • …
    corecore