600 research outputs found

    Elucidating sources and roles of Granzymes A and B during bacterial infection and sepsis

    Get PDF
    During bacterial sepsis, proinflammatory cytokines contribute to multiorgan failure and death in a pro- cess regulated in part by cytolytic cell granzymes. When challenged with a sublethal dose of the identi- fied mouse pathogen Brucella microti, wild-type (WT) and granzyme A (gzmA)/ mice eliminate the organism from liver and spleen in 2 or 3 weeks, whereas the bacteria persist in mice lacking perforin or granzyme B as well as in mice depleted of Tc cells. In comparison, after a fatal challenge, only gzmA/ mice exhibit increased survival, which correlated with reduced proinflammatory cytokines. Depletion of natural killer (NK) cells protects WT mice from sepsis without influencing bacterial clearance and the transfer of WT, but not gzmA/ NK, cells into gzmA/ recipients restores the susceptibility to sepsis. Therefore, infection-related pathology, but not bacterial clearance, appears to require gzmA, suggesting the protease may be a therapeutic target for the prevention of bacterial sepsis without affecting immune control of the pathogen

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    Self-reported pediatricians' management of the well-appearing young child with fever without a source: first survey in an European country in the anti-pneumococcal vaccine era

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies suggest a substantially reduced risk of invasive bacterial infection in children vaccinated with heptavalent pneumococcal conjugate vaccine (PCV). To investigate whether the introduction of PCV might affect clinical decision making, we conducted a cross-sectional survey aimed at Italian Pediatric physicians.</p> <p>Results</p> <p>The study included 348 (46.5%) primary care pediatricians; 251 (36.4%) hospital pediatricians, and 139 (20.1%) pediatric residents. In an hypothetical scenario, a well-appearing 12-month-old child with fever without source would be sent home with no therapy by 60.7% (419/690) of physicians if the child was not vaccinated with PCV. The proportion increased to 74.2% (512/690) if the child had received PCV (P < 0.0001). Also, physicians would obtain blood tests less frequently in the vaccinated than in unvaccinated children (139/690 [20.1%] <it>vs</it>. 205/690 [29.7%]; P < 0.0001), and started empiric antibiotic therapy less frequently (3.0% <it>vs</it>. 7.5%; P < 0.0001). In the hypothetical event that white blood cell count was 17,500/μL, a significantly lower proportion of physicians would ask for erythrocyte sedimentation rate (P < 0.017), C reactive protein (P < 0.0001), blood culture (P = 0.022), and urine analysis or dipstick (P = 0.028), if the child had received PCV. Only one third of participants routinely recommended PCV.</p> <p>Conclusion</p> <p>Our data suggest that implementation of educational programs regarding the proper management of the febrile child is needed.</p

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    A multicenter phase II study of induction chemotherapy with FOLFOX-4 and cetuximab followed by radiation and cetuximab in locally advanced oesophageal cancer

    Get PDF
    "Background: Preoperative chemoradiotherapy (CRT) improves the survival of patients with oesophageal cancer when compared with surgery alone.. . Methods: We conducted a phase II, multicenter trial of FOLFOX-4 and cetuximab in patients with locally advanced oesophageal cancer (LAEC) followed by daily radiotherapy (180 cGy fractions to 5040 cGy) with concurrent weekly cetuximab. Cytokines levels potentially related to cetuximab efficacy were assessed using multiplex-bead assays and enzyme-linked immunosorbent assay at baseline, at week 8 and at week 17. Primary end point was complete pathological response rate (pCR).. . Results: In all, 41 patients were enroled. Among 30 patients who underwent surgery, a pCR was observed in 8 patients corresponding to a rate of 27%. The most frequent grade 3\/4 toxicity was skin (30%) and neutropenia (30%). The 36-month survival rates were 85 and 52% in patients with pathological CR or PR vs 38 and 33% in patients with SD or PD.. . Conclusions: Incorporating cetuximab into a preoperative regimen for LAEC is feasible; no correlation between cytokines changes and patient outcome was observed. Positron emission tomography\/computed tomography study even if influenced by the small number of patients appears to be able to predict patients outcome both as early and late metabolic response.. . "Background: Preoperative chemoradiotherapy (CRT) improves the survival of patients with oesophageal cancer when compared with surgery alone. Methods: We conducted a phase II, multicenter trial of FOLFOX-4 and cetuximab in patients with locally advanced oesophageal cancer (LAEC) followed by daily radiotherapy (180 cGy fractions to 5040 cGy) with concurrent weekly cetuximab. Cytokines levels potentially related to cetuximab efficacy were assessed using multiplex-bead assays and enzyme-linked immunosorbent assay at baseline, at week 8 and at week 17. Primary end point was complete pathological response rate (pCR). Results: In all, 41 patients were enroled. Among 30 patients who underwent surgery, a pCR was observed in 8 patients corresponding to a rate of 27%. The most frequent grade 3/4 toxicity was skin (30%) and neutropenia (30%). The 36-month survival rates were 85 and 52% in patients with pathological CR or PR vs 38 and 33% in patients with SD or PD. Conclusions: Incorporating cetuximab into a preoperative regimen for LAEC is feasible; no correlation between cytokines changes and patient outcome was observed. Positron emission tomography/computed tomography study even if influenced by the small number of patients appears to be able to predict patients outcome both as early and late metabolic response. © 2011 Cancer Research UK All rights reserved

    Effects of the noradrenergic agonist clonidine on temporal and spatial attention

    Get PDF
    Rationale: Recent theories posit an important role for the noradrenergic system in attentional selection in the temporal domain. In contrast, the spatially diffuse topographical projections of the noradrenergic system are inconsistent with a direct role in spatial selection. Objectives: To test the hypotheses that pharmacological attenuation of central noradrenergic activity should (1) impair performance on the attentional blink task, a task requiring the selection of targets in a rapid serial visual stream of stimuli; and (2) leave intact the efficiency of the search for a target in a two-dimensional visuospatial stimulus array. Materials and methods: Thirty-two healthy adult human subjects performed an attentional blink task and a visual search task in a double-blind, placebo-controlled, between-subject study investigating the effects of the α2 adrenoceptor agonist clonidine (150 μg, oral dose). Results: No differential effects of clonidine vs placebo were found on the attentional blink performance. Clonidine slowed overall reaction times in the visual search task but did not impair the efficiency of the visual search. Conclusions: The attentional blink results are inconsistent with recent theories about the role of the noradrenergic system in temporal filtering and in mediating the attentional blink. This discrepancy between theory and data is discussed in detail. The visual search results, in combination with previous findings, suggest that the noradrenergic system is not directly involved in spatial attention processes but instead can modulate these processes in an indirect fashion. © 2007 Springer-Verlag

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    • …
    corecore