2,890 research outputs found

    Analytical versus observational fragilities::the case of Pettino (L’Aquila) damage data database

    Get PDF
    A damage data database of 131 reinforced concrete (RC) buildings, collected after 2009 L’Aquila (Italy) earthquake, is employed for the evaluation of observational fragility curves. The specific interpretation of damage data allowed carrying out fragility curves for slight, moderate, and heavy damage, (i.e., DS1, DS2, and DS3), defined according to EMS 98 macroseismic scale. Observational fragility curves are then employed for the calibration of FAST analytical methodology. FAST method is a spectral based approach, meant for the estimate of fragility curves of infilled RC buildings up to DS3, evaluated, again, according to EMS98. Kullback–Leibler divergence is employed to check the matching between analytical and observational fragilities. FAST input variables can vary in quite large ranges and the calibration provides a valuable suggestion for the application of the method in other cases in which field damage data are not available. Results showed that optimizing values, for the input variables calibrated, are in good agreement with typical values assumed in literature. Analytical results showed a very satisfactory agreement with observational data for DS2 and DS3, while systematical underestimation was found for the case of DS1

    First deep underground observation of rotational signals from an earthquake at teleseismic distance using a large ring laser gyroscope

    Get PDF
    Recent advances in large ring laser gyroscopes (RLG) technologies opened the possibility to observe rotations of the ground with sensitivities up to 10−1110^{-11} rads\frac{rad}{s} over the frequency band of seismological interest (0.01-1Hz), thus opening the way to a new geophysical discipline, i.e. rotational seismology. A measure of rotations in seismology is of fundamental interest for (a) the determination of all the six degrees of freedom that characterize a rigid body motion, and (b) the quantitative estimate of the rotational motions contaminating ground translation measurements obtained from standard seismometers. Within this framework, this paper presents and describes GINGERino, a new large observatory-class RLG located in Gran Sasso underground laboratory (LNGS), one national laboratories of the INFN (Istituto Nazionale di Fisica Nucleare). We also report unprecedented observations and analyses of the roto-translational signals from a tele-seismic event observed in such a deep underground environment

    Eurocode-based seismic assessment of modern heritage RC structures:The case of the <i>Tower of the Nations</i> in Naples (Italy)

    Get PDF
    Given the interest earned recently by modern heritage structures, seismic assessment criteria of Eurocode 8 for ordinary reinforced concrete structures are applied to a modern heritage RC building. This case study, the Tower of the Nations in Naples, was designed at the end of 1930s. Modal dynamic identification, in situ inspections and testing provided the necessary knowledge of the structure in terms of geometry, structural details, and material properties. Two nonlinear models of the structure are built up in both the hypotheses of accounting and not accounting for tuff infills’ stiffness and strength contribution. Lumped plasticity model for reinforced concrete elements and equivalent strut macro-models for tuff and concrete infills are employed. Seismic assessment through nonlinear dynamic analyses is carried out for both limit states of Significant Damage and Damage Limitation. Assessment of bare and infilled models emphasizes a lower demand in terms of maximum interstorey drift of the infilled model with respect to the bare model, for both limit states considered. Record-to-record variability for the sets of seven records becomes larger if infills strength and stiffness contribution is taken into account. Outcome of the assessment is not affected by infills, i.e. the structure can be considered safe (according to EC8 provisions) for both limit states, and in both modeling hypotheses. On the other hand, the ratio demand over capacity, for both the limit states considered, is strictly influenced by infills’ contribution. Assessment tools provided for ordinary RC structures can be addressed to modern heritage buildings as shown in this case study, even if specific care is necessary for nonlinear structural modeling in case of non-conventional structural elements and non-conventional structural materials (e.g., tuff infills in lieu of clay hollow brick infills)

    Optimization of wavelength range and data interval in chemometric analysis of complex pharmaceutical mixtures

    Get PDF
    AbstractThe performance of different chemometric approaches was evaluated in the spectrophotometric determination of pharmaceutical mixtures characterized by having the amount of components with a very high ratio. Principal component regression (PCR), partial least squares with one dependent variable (PLS1) or multi-dependent variables (PLS2), and multivariate curve resolution (MCR) were applied to the spectral data of a ternary mixture containing paracetamol, sodium ascorbate and chlorpheniramine (150:140:1, m/m/m), and a quaternary mixture containing paracetamol, caffeine, phenylephrine and chlorpheniramine (125:6. 25:1.25:1, m/m/m/m). The UV spectra of the calibration samples in the range of 200–320nm were pre-treated by removing noise and useless data, and the wavelength regions having the most useful analytical information were selected using the regression coefficients calculated in the multivariate modeling. All the defined chemometric models were validated on external sample sets and then applied to commercial pharmaceutical formulations. Different data intervals, fixed at 0.5, 1.0, and 2.0point/nm, were tested to optimize the prediction ability of the models. The best results were obtained using the PLS1calibration models and the quantification of the species of a lower amount was significantly improved by adopting 0.5 data interval, which showed accuracy between 94.24% and 107.76%

    Length–weight relationships for some plecoptera and ephemeroptera from a carbonate stream in central Apennine (Italy)

    Get PDF
    The relationship between dry weight and body length for larvae of Plecoptera (Leuctra spp., Isoperla grammatica, Nemoura cinerea) and Ephemeroptera (Baetis spp., Habrophlebia fusca, Paraleptophlebia submarginata, Ecdyonurus helveticus, Rhithrogena semicolorata), collected from a carbonate stream in the Apennine (central Italy), is reported. The power equation f(x) = Ax B has been applied to fit the curves of dry weight vs. body size (length) in the ranges 0.03–13.00 mg and 2–14 mm, respectively; a total of 674 larvae were examined. The power model was in very good agreement with experimental data. Moreover, the error between measured and estimated weight was in the 4–20% range. The data on Isoperla grammatica, Leuctra spp., Rhithrogena semicolorata and Baetis spp. were compared to those in a previous study in a different geographical setting (south-western Germany's Black Forest) obtaining similar results but with lower errors. We used and compared two methods: the weighted least-square method (WLS) and an analysis of covariance (ANCOVA). The values of the A and B coefficients obtained with the two methods were very similar (<6% discrepancy for either A or B). We found the best fits for all the examined Plecoptera (species, genus, and order level), while the results for Ephemeroptera were varied, with loose fits at the order level and also for Leptophlebiidae collectively considered

    Cannabis; epidemiological, neurobiological and psychopathological issues: an update

    Get PDF
    This document is the Accepted Manuscript version of the following article: Maria Antonietta De Luca, Gaetano Di Chiara, Cristina Cadoni, Daniele Lecca, Laura Orsolini, Duccio Papanti, John Corkery, Fabrizio Schifano, 'Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update', CNS & Neurological Disorders - Drug Targets, Vol. 16, 2017. The published manuscript is available at EurekaSelect via https://doi.org/10.2174/1871527316666170413113246. Published by Bentham Science.Cannabis is the illicit drug with both the largest current levels of consumption and the highest reported lifetime prevalence levels in the world. Across different countries, the prevalence of cannabis use varies according to the individual income, with the highest use being reported in North America, Australia and Europe. Despite its ‘soft drug’ reputation, cannabis misuse may be associated with several acute and chronic adverse effects. The present article aims at reviewing several papers on epidemiological, neurobiological and psychopathological aspects of the use of cannabis. The PubMed database was here examined in order to collect and discuss a range of identified papers. Cannabis intake usually starts during late adolescence/early adulthood (15-24 years) and drastically decreases in adulthood with the acquisition of working, familiar and social responsibilities. Clinical evidence supports the current socio-epidemiological alarm concerning the increased consumption among youngsters and the risks related to the onset of psychotic disorders. The mechanism of action of cannabis presents some analogies with other abused drugs, e.g. opiates. Furthermore, it has been well demonstrated that cannabis intake in adolescence may facilitate the transition to the use and/or abuse of other psychotropic drugs, hence properly being considered a ‘gateway drug’. Some considerations on synthetic cannabimimetics are provided here as well. In conclusion, the highest prevalence of cannabis use and the social perception of a relatively low associated risk are in contrast with current knowledge based on biological and clinical evidence. Indeed, there are concerns relating to cannabis intake association with detrimental effects on both cognitive impairment and mental health.Peer reviewe

    evaluation of tyre road noise and texture interaction on rubberised and conventional pavements using cpx and profiling measurements

    Get PDF
    Road traffic noise is the most common source of environmental pollution in urban areas, and therefore, the study of noise mitigation actions is fundamental for urban planning. The use of low noise ..

    modelling the acoustic performance of newly laid low noise pavements

    Get PDF
    Abstract Road traffic in urban contexts produces noise mainly by the interaction of tyres with pavement surface and, therefore, the use of low-noise surfaces represents the best solution since they aim to mitigate the source. Moreover, in urban contexts it is often the only viable solution, together with a careful traffic planning. The main challenge in their adoption as noise mitigation actions is to be able to forecast the acoustical performances that the new road surface will be able to offer. In the UE, the new Green Public Procurement requires experimental verification of noise performance compliance: the designer must declare the acoustical performance of the proposed low-noise pavement and, a few months after the laying, the actual performance of the road surface must be tested using the Close Proximity Method (CPX). Due to the importance of being able to forecast CPX levels, the present work reports a novel way to model CPX broadband levels of newly laid low-noise road surfaces using only data available to the designer before the laying or easily obtained through coring tests, such as grading curve, fractal dimension, asphalt binder content, air voids, voids in mineral aggregates. Two models were elaborated, using two different frequency separations for tyre/road noise. The first model separates low and high frequency contributions, while the second one also considers noise around 1 kHz separately, using a three-band model. Both models are capable of forecasting the acoustic performance of newly laid low-noise road surfaces, using different road mixture parameters at different frequency ranges. The three band model shows a lower RMSE

    2012 Emilia earthquake, Italy:reinforced concrete buildings response

    Get PDF
    Data of the Italian National Institute of Statistics are collected aimed at characterizing Reinforced Concrete (RC) building stock of the area struck by the 2012 Emilia earthquake (number of storeys, age of construction, structural typology). Damage observations, collected right after the event in reconnaissance reports, are shown and analyzed emphasizing typical weaknesses of RC buildings in the area. The evolution of seismic classification for Emilia region and RC buildings??? main characteristics represent the input data for the assessment of non-structural damage of infilled RC buildings, through a simplified approach (FAST method), based on EMS-98 damage scale. Peak Ground Acceleration (PGA) capacities for the first three damage states of EMS-98 are compared with registered PGA in the epicentral area. Observed damage and damage states evaluated for the PGA of the event, in the epicentral area, are finally compared. The comparison led to a fair agreement between observed and numerical data

    Insights from computational modeling on the potential hemodynamic effects of sinus rhythm versus atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) is the most common clinical tachyarrhythmia, posing a significant burden to patients, physicians, and healthcare systems worldwide. With the advent of more effective rhythm control strategies, such as AF catheter ablation, an early rhythm control strategy is progressively demonstrating its superiority not only in symptoms control but also in prognostic terms, over a standard strategy (rate control, with rhythm control reserved only to patients with refractory symptoms). This review summarizes the different impacts exerted by AF on heart mechanics and systemic circulation, as well as on cerebral and coronary vascular beds, providing computational modeling-based hemodynamic insights in favor of pursuing sinus rhythm maintenance in AF patients
    • …
    corecore