4,706 research outputs found

    Chirped seeded free-electron lasers: self-standing light sources for two-colour pump-probe experiments

    Full text link
    We demonstrate the possibility to run a single-pass free-electron laser in a new dynamical regime, which can be exploited to perform two-colour pump-probe experiments in the VUV/X-ray domain, using the free-electron laser emission both as a pump and as a probe. The studied regime is induced by triggering the free-electron laser process with a powerful laser pulse, carrying a significant and adjustable frequency chirp. As a result, the emitted light is eventually split in two sub-pulses, whose spectral and temporal separations can be independently controlled. We provide a theoretical description of this phenomenon, which is found in good agreement with experiments performed on the FERMI@Elettra free-electron laser

    First deep underground observation of rotational signals from an earthquake at teleseismic distance using a large ring laser gyroscope

    Get PDF
    Recent advances in large ring laser gyroscopes (RLG) technologies opened the possibility to observe rotations of the ground with sensitivities up to 10−1110^{-11} rads\frac{rad}{s} over the frequency band of seismological interest (0.01-1Hz), thus opening the way to a new geophysical discipline, i.e. rotational seismology. A measure of rotations in seismology is of fundamental interest for (a) the determination of all the six degrees of freedom that characterize a rigid body motion, and (b) the quantitative estimate of the rotational motions contaminating ground translation measurements obtained from standard seismometers. Within this framework, this paper presents and describes GINGERino, a new large observatory-class RLG located in Gran Sasso underground laboratory (LNGS), one national laboratories of the INFN (Istituto Nazionale di Fisica Nucleare). We also report unprecedented observations and analyses of the roto-translational signals from a tele-seismic event observed in such a deep underground environment

    The Global Electroweak and Higgs Fits in the LHC era

    Full text link
    We update the global fit to electroweak precision observables, including the effect of the latest measurements at hadron colliders of the WW and top-quark masses and the effective leptonic weak mixing angle. We comment on the impact of these measurements in terms of constraints on new physics. We also update the bounds derived from the fit to the Higgs-boson signal strengths, including the observables measured at the LHC Run 2, and compare the improvements with respect to the 7 and 8 TeV results.Comment: 5+1 pages, 3 figures, 2 tables. Prepared for the Proceedings of the 5th LHCP Conference -Shanghai, May 2017- and the EPS-HEP 2017 Conference -Venice, July 2017. (LHCP version.

    Electroweak precision constraints at present and future colliders

    Full text link
    We revisit the global fit to electroweak precision observables in the Standard Model and present model-independent bounds on several general new physics scenarios. We present a projection of the fit based on the expected experimental improvements at future e+e−e^+ e^- colliders, and compare the constraining power of some of the different experiments that have been proposed. All results have been obtained with the HEPfit code.Comment: 6 + 1 pages, 4 figures, 6 tables. Minor corrections. Contribution to the Proceedings of the 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, U.S.

    Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    Full text link
    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.Comment: 34 pages, 30 figures, 23 table

    Tandem Dye-Doped Nanoparticles for NIR Imaging via Cerenkov Resonance Energy Transfer

    Get PDF
    The detection of the Cerenkov radiation (CR) is an emerging preclinical imaging technique which allows monitoring the in vivo distribution of radionuclides. Among its possible advantages, the most interesting is the simplicity and cost of the required instrumentation compared, e.g., to that required for PET scans. On the other hand, one of its main drawbacks is related to the fact that CR, presenting the most intense component in the UV-vis region, has a very low penetration in biological tissues. To address this issue, we present here multifluorophoric silica nanoparticles properly designed to efficiently absorb the CR radiation and to have a quite high fluorescence quantum yield (0.12) at 826 nm. Thanks to a highly efficient series of energy transfer processes, each nanoparticle can convert part of the CR into NIR light, increasing its detection even under 1.0-cm thickness of muscle

    Global Bayesian Analysis of the Higgs-boson Couplings

    Get PDF
    We present preliminary results of a bayesian fit to the Wilson coefficients of the Standard Model gauge invariant dimension-6 operators involving one or more Higgs fields, using data on electroweak precision observables and Higgs boson signal strengths.Comment: Based on a talk given by Diptimoy Ghosh in ICHEP 2014, Valenci

    Numerical evaluation of temperature fields and residual stresses in butt weld joints and comparison with experimental measurements

    Get PDF
    This paper presents a novel numerical model, based on the finite element (FE) method, for the simulation of a welding process aimed to make a twopass V-groove butt joint, paying attention on the prediction of residual stresses and distortions. The ‘element birth and death’ technique for the simulation of the weld filler supply has been considered within this paper. The main advancements with respect to the state of the art herein proposed concern: (i) the development of a modelling technique able to simulate the plates interaction during the welding operation when an only plate is modelled. This phenomenon is usually neglected in literature; (ii) the heat amount is supplied to the FEs as volumetric generation of the internal energy, allowing overcoming the time-consuming calibration phase needed to use the Goldak's model, commonly adopted in literature. Predicted results showed a good agreement with experimental ones

    Calibration techniques for binary classification problems: A comparative analysis

    Get PDF
    Calibrating a classiïŹcation system consists in transforming the output scores, which somehow state the conïŹdence of the classiïŹer regarding the predicted output, into proper probability estimates. Having a well-calibrated classiïŹer has a non-negligible impact on many real-world applications, for example decision making systems synthesis for anomaly detection/fault prediction. In such industrial scenarios, risk assessment is certainly related to costs which must be covered. In this paper we review three state-of-the-art calibration techniques (Platt’s Scaling, Isotonic Regression and SplineCalib) and we propose three lightweight procedures based on a plain ïŹtting of the reliability diagram. Computational results show that the three proposed techniques have comparable performances with respect to the three state-of-the-art approaches

    Probabilistic Analysis of Fatigue Behavior of Single Lap Riveted Joints

    Get PDF
    This research deals with the fatigue behavior of 200 small single lap multiple-riveted joint specimens, widely used for aeronautic structures. The tests were performed with three different levels of stress with stress ratio R = 0.05; three levels were set: 90 MPa, 120 MPa and 160 MPa. The fatigue life and critical crack size for all tested specimens were analyzed. According to the results’ analysis, two types of fracture, through-hole and in proximity of the hole, were observed, depending on the level of stress: the higher the applied stress, the more through-hole cracking. Indeed, under the fatigue load with a stress level of 90 MPa, less than 30% of specimens showed cracks propagating through the hole, while, at the stress level of 120 MPa, the percentage reaches 36.3%. At the stress level of 160 MPa, 100% of specimens failed through the hole. Moreover, aimed to use experimental data for probabilistic methods, a statistical analysis was performed according to the Anderson–Darling test. This method allowed the analysis of the datasets, in terms of both fatigue life and critical crack size, providing information about the best distribution function able to fit experimental results
    • 

    corecore