128 research outputs found

    Deconstructing double-barred galaxies in 2D and 3D. II. Two distinct groups of inner bars

    Full text link
    The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of: i) two-dimensional multi-component photometric decompositions, and ii) three-dimensional statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length vs. ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed, or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.Comment: 14 pages, 8 figures, 1 table. Accepted for publication in MNRA

    The universal variability of the stellar initial mass function probed by the TIMER survey

    Get PDF
    The debate about the universality of the stellar initial mass function (IMF) revolves around two competing lines of evidence. While measurements in the Milky Way, an archetypal spiral galaxy, seem to support an invariant IMF, the observed properties of massive early-type galaxies (ETGs) favor an IMF somehow sensitive to the local star-formation conditions. However, the fundamental methodological and physical differences between the two approaches have hampered a comprehensive understanding of IMF variations. Here, we describe an improved modeling scheme that, for the first time, allows consistent IMF measurements across stellar populations with different ages and complex star-formation histories (SFHs). Making use of the exquisite MUSE optical data from the TIMER survey and powered by the MILES stellar population models, we show the age, metallicity, [Mg/Fe], and IMF slope maps of the inner regions of NGC 3351, a spiral galaxy with a mass similar to that of the Milky Way. The measured IMF values in NGC 3351 follow the expectations from a Milky Way-like IMF, although they simultaneously show systematic and spatially coherent variations, particularly for low-mass stars. In addition, our stellar population analysis reveals the presence of metal-poor and Mg-enhanced star-forming regions that appear to be predominantly enriched by the stellar ejecta of core-collapse supernovae. Our findings therefore showcase the potential of detailed studies of young stellar populations to provide the means to better understand the early stages of galaxy evolution and, in particular, the origin of the observed IMF variations beyond and within the Milky Way
    • …
    corecore