282 research outputs found

    FISH-eyed and genome-wide views on the spatial organisation of gene expression

    Get PDF
    AbstractEukaryotic cells store their genome inside a nucleus, a dedicated organelle shielded by a double lipid membrane. Pores in these membranes allow the exchange of molecules between the nucleus and cytoplasm. Inside the mammalian cell nucleus, roughly 2 m of DNA, divided over several tens of chromosomes is packed. In addition, protein and RNA molecules functioning in DNA-metabolic processes such as transcription, replication, repair and the processing of RNA fill the nuclear space. While many of the nuclear proteins freely diffuse and display a more or less homogeneous distribution across the nuclear interior, some appear to preferentially cluster and form foci or bodies. A non-random structure is also observed for DNA: increasing evidence shows that selected parts of the genome preferentially contact each other, sometimes even at specific sites in the nucleus. Currently a lot of research is dedicated to understanding the functional significance of nuclear architecture, in particular with respect to the regulation of gene expression. Here we will evaluate evidence implying that the folding of DNA is important for transcriptional control in mammals and we will discuss novel high-throughput techniques expected to further boost our knowledge on nuclear organisation

    Incision Coordination in Nucleotide Excision Repair

    Get PDF
    This thesis aims to contribute to the understanding of the molecular mechanism that underlies one of the main DNA repair pathways in mammals, nucleotide excision rcpair. In chapter 1 the relevance of DNA repair in general is outlined. An overview of mammalian strategies to counteract DNA damage is provided, to show that an intricate network of repair machineries permanently guards the integrity of the genome. In discussing each repair pathway, attention is focussed on how DNA damage is removed and what protein fhetors arc required to accomplish this. Chapter I serves as a framework for chapter 2, in which one repair pathway, mammalian nucleotide excision repair, is discussed more extensively. In this chapter, a comprehensive oven,jew of the characteristics of each protein factor involve

    An evaluation of 3C-based methods to capture DNA interactions

    Get PDF

    Novel orthogonal methods to uncover the complexity and diversity of nuclear architecture

    Get PDF
    Recent years have seen a vast expansion of knowledge on three-dimensional (3D) genome organization. The majority of studies on chromosome topology consists of pairwise interaction data of bulk populations of cells and therefore conceals heterogenic and more complex folding patterns. Here, we discuss novel methodologies to study the variation in genome topologies between different cells and techniques that allow analysis of complex, multi-way interactions. These technologies will aid the interpretation of genome-wide chromosome conformation data and provide strategies to further dissect the interplay between genome architecture and transcription regulation

    How chromosome topologies get their shape: views from proximity ligation and microscopy methods

    Get PDF
    The 3D organization of our genome is an important determinant for the transcriptional output of a gene in (patho)physiological contexts. The spatial organization of linear chromosomes within nucleus is dominantly inferred using two distinct approaches, chromosome conformation capture (3C) and DNA fluorescent in situ hybridization (DNA-FISH). While 3C and its derivatives score genomic interaction frequencies based on proximity ligation events, DNA-FISH methods measure physical distances between genomic loci. Despite these approaches probe different characteristics of chromosomal topologies, they provide a coherent picture of how chromosomes are organized in higher-order structures encompassing chromosome territories, compartments, and topologically associating domains. Yet, at the finer topological level of promoter-enhancer communication, the imaging-centered and the 3C methods give more divergent and sometimes seemingly paradoxical results. Here, we compare and contrast observations made applying visual DNA-FISH and molecular 3C approaches. We emphasize that the 3C approach, due to its inherently competitive ligation step, measures only 'relative' proximities. A 3C interaction enriched between loci, therefore does not necessarily translates into a decrease in absolute spatial distance. Hence, we advocate caution when modeling chromosome conformations

    DNA structural elements required for ERCC1-XPF endonuclease activity

    Get PDF
    The heterodimeric complex ERCC1-XPF is a structure-specific endonuclease responsible for the 5' incision during mammalian nucleotide excision repair (NER). Additionally, ERCC1-XPF is thought to function in the repair of interstrand DNA cross-links and, by analogy to the homologous Rad1-Rad10 complex in Saccharomyces cerevisiae, in recombination between direct repeated DNA sequences. To gain insight into the role of ERCC1-XPF in such recombinational processes and in the NER reaction, we studied in detail the DNA structural elements required for ERCC1-XPF endonucleolytic activity. Recombinant ERCC1-XPF, purified from insect cells, was found to cleave stem-loop substrates at the DNA junction in the absence of other proteins like replication protein A, showing that the structure-specific endonuclease activity is intrinsic to the complex. Cleavage depended on the presence of divalent cations and was optimal in low Mn2+ concentrations (0.2 mM). A minimum of 4-8 unpaired nucleotides was required for incisions by ERCC1-XPF. Splayed arm and flap substrates were also cut by ERCC1-XPF, resulting in the removal of 3' protruding single-stranded arms. All incisions occurred in one strand of duplex DNA at the 5' side of a junction with single-stranded DNA. The exact cleavage position varied from 2 to 8 nucleotides away from the junction. One single-stranded arm, protruding either in the 3' or 5' direction, was necessary and sufficient for correct positioning of incisions by ERCC1-XPF. Our data specify the engagement of ERCC1-XPF in NER and allow a more direct search for its specific role in recombination

    DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair

    Get PDF
    The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning o

    Neuronal differentiation of embryonic stem cells

    Get PDF
    AbstractNeuronal differentiation from totipotent precursors in vitro, is thought to require two signals: first a biophysical state (cellular aggregation) followed by a biochemical signal (retinoic acid treatment). In investigating the properties of retinoic acid-differentiated embryonic stem cell lines. However, we noted that retinoic acid treatment without prior aggregation, is sufficient to induce expression of the neuronal markers GAP-43 and NF-165. In agreement, immunohistochemistry revealed the presence of GAP-43 positive cells in these embryonic stem cell monolayers after three days of retinoic acid (RA) treatment. Furthermore an NF-165 positive subpopulation of cells was clearly observed after 4–5 days of RA treatment. The expression of these neuronal markers coincided with the appearance of electrically excitable cells, as assayed with whole cell patch clamp recording. We conclude that for neuronal differentiation of totipotent embryonic stem cells in vitro, one biochemical signal, i.e. retinoic acid treatment, is sufficient
    • …
    corecore