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REVIEW

Molecular mechanism of nucleotide
excision repair
Wouter L. de Laat, Nicolaas G.J. Jaspers, and Jan H.J. Hoeijmakers1

Medical Genetic Center, Department of Cell Biology and Genetics, Erasmus University,
3000 DR Rotterdam, The Netherlands

From its very beginning, life has faced the fundamental
problem that the form in which genetic information is
stored is not chemically inert. DNA integrity is chal-
lenged by the damaging effect of numerous chemical and
physical agents, compromizing its function. To protect
this Achilles heel, an intricate network of DNA repair
systems has evolved early in evolution. One of these is
nucleotide excision repair (NER), a highly versatile and
sophisticated DNA damage removal pathway that coun-
teracts the deleterious effects of a multitude of DNA
lesions, including major types of damage induced by en-
vironmental sources. The most relevant lesions subject
to NER are cyclobutane pyrimidine dimers (CPDs) and
(6-4) photoproducts (6-4PPs), two major kinds of injury
produced by the shortwave UV component of sunlight.
In addition, numerous bulky chemical adducts are elimi-
nated by this process. Within the divergent spectrum of
NER lesions, significant distortion of the DNA helix ap-
pears to be a common denominator. Defects in NER un-
derlie the extreme photosensitivity and predisposition to
skin cancer observed with the prototype repair syndrome
xeroderma pigmentosum (XP). Seven XP complementa-
tion groups have been identified, representing distinct
repair genes XPA–G (discussed in detail below).

In the last decade, all key NER factors have been
cloned and the core of the ‘cut-and-paste’ reaction has
been reconstituted in vitro from purified components.
Recently, XPC (complexed to hHR23B) has been identi-
fied as a DNA-damage sensor and repair-recruitment fac-
tor. The general transcription factor complex TFIIH, con-
taining the XPB and XPD helicases, mediates strand
separation at the site of the lesion. XPA verifies the dam-
age in an open DNA conformation and is crucial in the
assembly of the remainder of the repair machinery. Rep-
lication protein A (RPA) stabilizes the opened DNA
complex and is involved in positioning the XPG and
ERCC1–XPF endonucleases responsible for the DNA in-
cisions around the lesion. After removal of the damage-
containing oligonucleotide, typically 24–32 nucleotides
in length, general replication factors fill in the remaining
gap and close it.

Two modes of NER can be distinguished: repair of le-
sions over the entire genome, referred to as global ge-
nome NER (GG–NER), and repair of transcription-block-
ing lesions present in transcribed DNA strands, hence
called transcription-coupled NER (TC–NER). Most XP
groups harbor defects in a common component of both
NER subpathways. GG–NER is dependent on the activ-
ity of all factors mentioned above, including the GG–
NER-specific complex XPC–hHR23B. The rate of repair
for GG–NER strongly depends on the type of lesion. For
instance, 6-4PPs are removed much faster from the ge-
nome than CPDs, probably because of differences in af-
finity of the damage sensor XPC–hHR23B. In addition,
the location (accessibility) of a lesion influences the re-
moval rate in vivo. In TC–NER, damage is detected by
the elongating RNA polymerase II complex when it en-
counters a lesion. Interestingly, a distinct disorder,
Cockayne syndrome (CS), is associated with a specific
defect in transcription-coupled repair. The identification
of two complementation groups (CS-A and CS-B) shows
that at least two gene products are specifically needed for
fast and efficient repair of transcribed strands. Pheno-
typically, CS is a very pleiotropic condition character-
ized by photosensitivity as well as severe neurological,
developmental, and premature aging features. Most of
these symptoms are not seen even with totally NER-
deficient XP patients. The additional symptoms of CS
suggest that transcription-coupled repair and/or the CS
proteins have functions beyond NER. Also, non-NER-
specific lesions (such as oxidative damage) that stall
transcription elongation appear to be removed in a tran-
scription-coupled fashion, linking a blocked polymerase
to multiple repair pathways. Intriguingly, some XP-B,
XP-D, and XP-G patients display CS features combined
with XP manifestations. Yet other XP-B and XP-D indi-
viduals suffer from the CS-like brittle-hair syndrome
trichothiodystrophy (TTD). This clinical conundrum
points to additional roles of these NER factors as well. A
recent mouse model for TTD has linked mutations in
the XPD subunit of the dual functional TFIIH complex
with deficiencies in basal transcription underlying at
least some of the TTD manifestations. Thus, NER de-
fects are associated with a surprisingly wide clinical het-
erogeneity due to additional functions of the NER factors
involved.
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This review focuses on the core NER components of
mammalian cells, integrating recent advances into a de-
tailed model for the molecular reaction mechanism.
Various aspects of NER and associated syndromes have
been comprehensively summarized in previous reviews
(see Hanawalt and Mellon 1993; Hoeijmakers 1994;
Friedberg et al. 1996; Sancar 1996; Wood 1996, 1997;
Bootsma et al. 1997; de Boer and Hoeijmakers 1999).

XPC–hHR23B

XPC is the sole XP factor dispensable for TC–NER and is
restricted to global genome NER (Venema et al. 1990a,
1991; van Hoffen et al. 1995). The 125-kD XPC protein is
complexed with the 58-kD hHR23B gene product, one of
the two human homologs of the yeast NER factor Rad23
(Masutani et al. 1994) (Table 1) (for proteins and do-
mains, see Fig. 1). hHR23B stimulates XPC activity in
vitro (Sugasawa et al. 1996), probably in a structural
rather than a catalytic fashion, as the 54-amino acid
XPC-binding domain of hHR23B is already sufficient for

XPC stimulation (Masutani et al. 1997). hHR23B is
much more abundant than XPC in mammalian cells, and
like hHR23A, the other human homolog of Rad23,
mostly exists in a free form in the cell (Masutani et al.
1994; van der Spek et al. 1996). hHR23A can substitute
for hHR23B in binding and stimulating XPC in vitro,
suggesting some functional redundancy (Sugasawa et al.
1997). Yeast Rad23 and its two mammalian derivatives
harbor a ubiquitin-like moiety at their amino terminus
(Masutani et al. 1994; Fig. 1), pointing to additional en-
gagements in the ubiquitin pathway of protein (in)stabil-
ity. In Saccharomyces cerevisiae, this domain is indis-
pensable for the repair function of Rad23 (Watkins et al.
1993; Mueller and Smerdon 1996).

The specific role of XPC–hHR23B in GG–NER has
been obscure for quite some time. XPC was detected in
partially purified TFIIH fractions after seven chromato-
graphic steps; and in S. cerevisiae, in vitro binding be-
tween the XPC homolog Rad4 (Table 1) and yTFIIH was
reported (Bardwell et al. 1994; Drapkin et al. 1994), sug-
gesting a direct interaction between these two protein

Table 1. Core NER factors

NER factor Subunits

name function in NER
(additional)

engagements name
protein
size (aa)

rodent
mutant

S. cerevisiae
homolog remarks

XPC–hHR23B damage sensor and only in GG–NER; XPC 940 Rad4 affinity for damaged
repair recruitment not involved in DNA
factor TC–NER hHR23B 409 Rad23 stimulates XPC

activity in vitro

hHR23A 363 Rad23 can substitute
for hHR23B
in vitro

TFIIH catalyzes open complex basal RNA Pol II XPB 782 ERCC3 Rad25/SSL2 38 → 58 helicase
formation around the transcription XPD 760 ERCC2 Rad3 58 → 38 helicase
lesion and facilitates cell cycle p34 303 TFB4 DNA binding?
repair complex regulation (?) p44 395 SSL1 DNA binding?
assembly p62 548 TFB1

additional non- p52 462 TFB2
NER- specific Mat1 309 TFB3 CAK subcomplex
role in transcrip- Cdk7 346 Kin28 CAK subcomplex
tion-coupled Cyclin H 323 CCL1 CAK subcomplex
repair (?)

XPA binds damaged DNA XPA 273 Rad14 affinity for single-
and facilitates stranded and
repair complex damaged DNA
assembly

RPA stabilizes opened replication RPA70 616 Rfa1 ssDNA binding
DNA complex and recombination RPA32 270 Rfa2 ssDNA binding
positions nucleases RPA14 121 Rfa3

XPG catalyzes 38 incision additional non-Ner- XPG 1186 ERCC5 Rad2 Member of FEN-1
and stabilizes full specific role in family of
open complex transcription- structure-specific

coupled repair (?) nucleases
ERCC1–XPF catalyzes 58 incision interstrand cross-link ERCC1 297 ERCC1 Rad10 structure-specific

repair endonuclease
recombination via XPF 905 ERCC4 Rad1

single-strand
annealing

Nucleotide excision repair
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complexes (Table 2). XPC–hHR23B and XPC alone dis-
play a similar high affinity for both single-stranded (ss)
and double-stranded (ds) DNA and a preference for UV-
damaged DNA (Masutani et al. 1994; Shivji et al. 1994;
Reardon et al. 1996a). XPC–hHR23B is absolutely re-
quired for dual incision as well as for open complex for-
mation during GG–NER (Aboussekhra et al. 1995; Mu et
al. 1995, 1997; Mu and Sancar 1997; Evans et al. 1997b).
An artificial DNA substrate containing single-stranded
bubbles across or 58 of a lesion obviated the requirement
of XPC–hHR23B (Mu and Sancar 1997). Furthermore,
both the helicase complex TFIIH and XPC–hHR23B were
essential for (limited) opening around a damage (Evans et
al. 1997b). Also, XPC–hHR23B is dispensable for in vitro

repair of an artificial cholesterol DNA adduct. Appar-
ently, certain DNA structures alleviate the need for
XPC–hHR23B (Mu et al. 1996). These data are all in line
with a role for XPC–hHR23B in open complex formation
and/or stabilization but do not exclude a role even ear-
lier in the reaction.

Evidence for the latter was obtained recently by a se-
ries of experiments in which two damaged plasmids of
different sizes were separately preincubated, one with
purified XPC–hHR23B and the other with all other NER
factors. After mixing, initial repair was found focused on
the plasmid preincubated with XPC–hHR23B, demon-
strating that XPC–hHR23B is the first factor in NER,
working even before TFIIH, XPA, and RPA and capable

Figure 1. Functional domains in mam-
malian NER proteins. Schematic presenta-
tion of identified functional domains in
NER proteins. DNA- and protein-interac-
tion domains are indicated above (brown
boxes) (BD) Binding domain; (putative)
functional domains based on primary
amino acid sequence are indicated below
each schematic presentation (hatched
boxes). (XPC–hHR23B) ScRad4–hom: Do-
mains within XPC with (limited) homol-
ogy to S. cerevisiae Rad4. Ubiquitin: Ubiq-
uitin-like region. UBA: Ubiquitin-associ-
ated domain. (TFIIH) p34, p44, and p62 are
other TFIIH subunits. (XPA) NLS: Nuclear
localization signal. E-cluster: Glutamic
acid-rich region. Zn: Zn2+ finger. (RPA)
SBD: Putative ssDNA-binding domain.
(XPG) N, I, and C are regions conserved in
the FEN-1 family of structure-specific en-
donucleases. (ERCC1–XPF) 2xHhH-motif:
Double-HhH motif.
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of recruiting the remainder of the repair machinery to
the lesion (Sugasawa et al. 1998). DNase I footprinting
showed that XPC–hHR23B binds directly to DNA dam-
age and changes the DNA conformation around the le-
sion (Sugasawa et al. 1998). Thus, XPC–hHR23B initiates
GG–NER by sensing and binding lesions, locally distort-
ing the DNA double helix and recruiting the other fac-
tors of the system.

TFIIH

TFIIH is a nine-subunit protein complex (Winkler et al.
1998) involved in initiation of RNA polymerase II (Pol II)
transcription (Conaway and Conaway 1989; Feaver et al.
1991; Gerard et al. 1991; Flores et al. 1992), NER (Feaver
et al. 1993; Schaeffer et al. 1993, 1994; Drapkin et al.
1994; van Vuuren et al. 1994; Vermeulen et al. 1994;
Wang et al. 1994, 1995) and possibly in cell cycle regu-
lation (Feaver et al. 1994; Roy et al. 1994a; Serizawa et al.
1995; Shiekhatter et al. 1995). In NER, TFIIH functions
both in GG–NER and TC–NER. XP patients with muta-
tions in XPB or XPD may also show manifestations typi-
cal of CS or TTD, indicating a central role of TFIIH in
transcription-coupled repair (see below). TFIIH has mul-
tiple enzymatic activities. XPB and XPD exhibit DNA-
dependent ATPase and helicase functions; XPB can un-
wind DNA in a 38 → 58 direction, and XPD in the oppo-
site direction (Schaeffer et al. 1993, 1994; Roy et al
1994b). The cdk-activating kinase (CAK) subcomplex,
comprising subunits Cdk7, cyclin H, and Mat1, can
phosphorylate several cyclin-dependent kinases (cdks),
as well as the carboxy-terminal domain of the large sub-
unit of RNA Pol II, activities relevant to cell cycle regu-
lation and transcription initiation, respectively (Feaver
et al.1991; Roy et al. 1994a). The p34 and p44 subunits of
TFIIH contain Zn2+-finger motifs and putative DNA-
binding capacity (Humbert et al. 1994). As yet, no func-
tions have been assigned to the remaining p52 and p62
subunits (Fischer et al. 1992; Marinoni et al. 1997). Sev-
eral subcomplexes of TFIIH exist in the cell. The core

complex comprises p34, p44, p52, p62, and XPB. CAK is
present both as a free heterotrimer and as a component of
TFIIH, presumably by binding to XPB and XPD (Ross-
ignol et al. 1997). XPD is found associated with both core
TFIIH and the CAK complex (Serizawa et al. 1995;
Shiekhatter et al. 1995; Svejstrup et al. 1995; Reardon et
al. 1996b; Rossignol et al. 1997). CAK is required for
RNA Pol II transcription initiation but is dispensable for
in vitro NER (Sung et al. 1996; Wang et al. 1995; Mu et
al. 1996).

Both in transcription initiation and in NER, TFIIH is
needed for melting the DNA double helix (Holstege et al.
1996; Evans et al. 1997b; Mu et al. 1997). Permanganate
footprinting studies on the adenovirus major late pro-
moter showed that promoter melting, necessary to acti-
vate the RNA Pol II initiation complex, proceeds in three
steps (Dvir et al. 1996; Holstege et al. 1996, 1997; Jiang et
al. 1996; Yan and Gralla 1997). Initially, 11 bp around the
initiator site (from position −9 to +2) are melted. Melting
and maintenance of this open complex require the ATP-
dependent helicases of TFIIH (Holstege et al. 1995, 1996;
for review, see Okhuma 1997). Further opening to posi-
tion +4 (13 bp unwound) occurs concomitant with the
formation of the first RNA phosphodiester bonds and is
also TFIIH dependent. Finally, progression to a 17-bp
opened complex (−9/+8), which marks the transition to a
productive RNA Pol II elongation complex, proceeds in-
dependent of TFIIH (Holstege et al. 1997). Thus, TFIIH is
actively involved in creating and maintaining an 11- to
13-bp opening during transcription initiation. In NER,
the full open complex spans 20–30 bp around the lesion.
Footprinting studies on a site-specific lesion with cell-
free extracts showed that TFIIH is also indispensable for
repair opening. In the absence of ATP, repair unwinding
is abolished (Evans et al. 1997a). Accordingly, an
ATPase-inactivated mutant form of TFIIH fails to make
an open complex (G. Winkler and J.H.J. Hoejimakers,
unpubl.). Limited opening (<10 bp) was still observed in
extracts lacking RPA, XPA, or XPG but was completely
absent in extracts containing mutated XPB, XPD, and
XPC protein (Evans et al. 1997b). Possibly, analogous to

Table 2. Physical interactions between NER proteins

TFIIH RPA XPG ERCC1–XPF

XPA PD PD, CP PD, 2H
(Park et al. 1995a;

Nocentini et al. 1997)
(He et al. 1995; Li et al.

1995b; Saijo et al. 1996;
Stigger et al. 1998)

(Li et al. 1994; 1995a;
Park and Sancar 1994;
Saijo et al. 1996)

XPC–hHR23B CP
(Drapkin et al. 1994)

TFIIH CP, IP
(Mu et al. 1995;

Iyer et al. 1996)
RPA PD, XL

(He et al. 1995;
de Laat et al. 1998b)

PD, XL
(Bessho et al. 1997;

de Laat et al. 1998b)

(PD) Pull-down experiments: (GST-, MBP-) affinity chromatography (techniques using large quantities of ‘bait’ protein). (CP) Copu-
rification or coprecipitation from cell extracts. (2H) Dual hybrid system. (IP) (Immuno-) coprecipitation of in vitro-translated gene
products (low protein concentrations). (XL) Glutaraldehyde cross-linked at DNA junctions. Relevant references are indicated.

Nucleotide excision repair
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opening in transcription initiation, open complex forma-
tion in repair occurs in multiple steps and the helicase
activity of TFIIH is restricted to initial opening only (dis-
cussed more extensively below).

Demarcation of the lesion through local DNA opening
provides the ss- to dsDNA transitions required for cleav-
age by the two structure-specific NER nucleases XPG
and ERCC1–XPF (see below). Studies with premelted
DNA substrates containing a site-specific lesion re-
vealed that DNA unwinding is not the only function of
TFIIH in excision repair. Unlike what was found for tran-
scription initiation, bubbles of 10 nucleotides at the 38
and 58 side, as well as one of 20 nucleotides spanning the
lesion, all still require TFIIH for efficient further process-
ing, indicating an additional, probably structural, role for
TFIIH in repair (Mu and Sancar 1997). Consistent with
this notion, a number of interactions with repair factors
have been reported, including XPA and the aforemen-
tioned interactions with XPC (Bardwell et al. 1994; Drap-
kin et al. 1994; Park et al. 1995a; Nocentini et al. 1997)
(Table 2). Direct in vitro interactions were also described
between multiple subunits of TFIIH and XPG (Iyer et
al.1996), consistent with the reported detection of XPG
in partially purified TFIIH fractions (Mu et al. 1995). A
mutant in the carboxy-terminal domain of XPB was
shown to fully support DNA unwinding and allow 38 but
not 58 incision, suggesting that TFIIH facilitates the 58
incision by ERCC1–XPF (Evans et al. 1997b). In vitro
binding was also described between TFIIH and CSA, an
interaction perhaps relevant for TCR (Henning et al.
1995). Clearly, in addition to unwinding, TFIIH has other
engagements in NER.

XPA

The XPA gene product has a crucial role at an early stage
of both TC–NER and GG–NER (Tanaka et al. 1990). It is
a DNA-binding protein (Fig. 1) with a marked preference
for damaged DNA (Robins et al. 1991; Jones and Wood
1993; Asahina et al. 1994). The Zn2+-finger containing
minimal region required for DNA binding (Fig. 1)
(Tanaka et al. 1990; Kuraoka et al. 1996; Morita et al.
1996; Buchko and Kennedy 1997) is essential for its func-
tion (Miyamoto et al. 1992; Asahina et al. 1994). The
structure of this domain has been resolved recently
(Buchko et al. 1998; Ikegami et al. 1998). Various NER-
specific types of damage, including 6-4PPs and CPDs, are
recognized by XPA and, in general, the affinity of XPA
for a lesion correlates with the extent of helical distor-
tion (Robins et al. 1991; Jones and Wood 1993; Asahina
et al. 1994). It has been suggested that the single-strand-
edness of damaged sites may be the determinant for XPA
recognition (Jones and Wood 1993). In addition, XPA
maintains an intricate network of contacts with core re-
pair factors (see Table 2). In vitro protein–protein inter-
actions were reported with ERCC1 (Li et al. 1994a,
1995a; Park and Sancar 1994), XPF (weak interaction)
(Bessho et al. 1997), the p32 and p70 subunits of RPA (He
et al. 1995; Li et al. 1995b; Saijo et al. 1996; Ikegami et al.
1998; Stigger et al. 1998), and TFIIH (Park et al. 1995a;

Nocentini et al. 1997) (see Table 2; for mapped interac-
tion domains in XPA, see Fig. 1). Also, in vitro binding
was claimed for the Cockayne syndrome B (CSB) protein
and the p34 subunit of basal transcription factor TFIIE
(Park et al. 1995a; Selby and Sancar 1997). In view of its
damage preference, XPA has long been considered the
damage-sensing and repair-recruitment factor of NER.
However, as XPC–hHR23B was shown recently to act
first, the function of XPA has to be reconsidered. Given
its affinity for damaged DNA and its ability to interact
with many (core) repair factors, XPA is anticipated to
verify NER lesions and to play a central role in position-
ing the repair machinery correctly around the injury.

RPA

RPA, originally identified as a factor required for in vitro
SV40 DNA replication (Wobbe et al. 1987; Fairman and
Stillman 1988; Wold and Kelly 1988) has additional roles
in NER and recombination (Coverley et al. 1991; 1992;
Longhese et al. 1994; for review, see Wold 1997). Human
RPA (hRPA) is a ssDNA-binding protein composed of
three subunits of 70, 32, and 14 kD (see Fig. 1). Its ap-
parent ssDNA association constant of 109–1011/M is at
least three orders of magnitude higher than to dsDNA
(Kim et al. 1992, 1994). Binding of an RPA molecule to
ssDNA involves the 70-kD subunit (Wold et al. 1989;
Kenny et al. 1990; Gomes and Wold 1996; Kim et al.
1996), but single-stranded binding domains are also pre-
sent in the 32-kD and perhaps in the 14-kD subunit
(Philipova et al. 1996; Bochkarev et al. 1997, 1998; Brill
and Bastin-Shanower 1998). Two binding modes have
been identified; RPA interacts with a minimal region of
8–10 nucleotides (Blackwell and Borowiec 1994) that is
thought to precede the almost 100-fold more stable 30-
nucleotide binding mode (Kim et al. 1992, 1994; Black-
well et al. 1996). In yeast, binding modes involving larger
DNA stretches (90–100 nucleotides) have been reported
(Alani et al. 1992). Recently, we showed that RPA binds
ssDNA with a defined polarity and that initial DNA
binding occurs at the 58-oriented site of RPA (de Laat et
al. 1998b). Possibly, transition to the full 30-nucleotide
binding form involves stretching of the RPA molecule
along the DNA in the 38 direction. Cooperativity of RPA
binding to ssDNA is considered low, but human RPA is
still 10–20 times more likely to bind adjacent to an al-
ready bound RPA molecule than to naked DNA (Kim et
al. 1994, 1995). In RPA-dependent DNA-metabolizing
processes, complementary DNA strands are separated at
a certain stage and action is required along ssDNA in-
termediates. By binding to ssDNA, RPA is thought to
stabilize such intermediates and remove secondary
structures.

In NER, full opening around the lesion requires RPA
(Evans et al. 1997b; Mu et al. 1997), which probably
binds to the undamaged DNA strand (de Laat et al.
1998b). The size of the fully opened repair intermediate
is ∼30 nucleotides, which corresponds to the size of the
optimal DNA-binding region of a single RPA heterotri-
mer. RPA may not only stabilize a fully open repair com-
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plex, but also facilitate its creation. RPA is also crucial
for coordinating the NER nucleases. Interactions were
demonstrated with both XPG and ERCC1 (excision re-
pair cross complementation group 1)–XPF (He et al.
1995; Matsunaga et al. 1996; Bessho et al. 1997; de Laat
et al. 1998b) (Table 2), and recently it was found that the
defined DNA-binding orientation of RPA is particularly
relevant for these interactions. Bound to the undamaged
strand, the 38-oriented side of RPA binds ERCC1–XPF,
whereas the 58-oriented side binds XPG. RPA confers
strand specificity to ERCC1–XPF by strongly stimulat-
ing incisions in the damaged strand and inhibiting cuts
in the undamaged strand (de Laat et al. 1998b). RPA and
XPA bind cooperatively to damaged DNA (He et al. 1995;
Saijo et al.1996). RPA itself was also found to have affin-
ity for damaged DNA (Clugston et al. 1992; He et al.
1995; Burns et al. 1996), which led to the suggestion that
this factor is involved in DNA damage recognition.
However, because RPA is anticipated to bind the undam-
aged strand during NER (de Laat et al. 1998b), RPA prob-
ably does not recognize the lesion per se but, rather, has
affinity for single-stranded regions exposed by lesion-in-
duced helical distortion. Consistent with this notion,
RPA was reported to bind to single-stranded bubbles as
small as 4 nucleotides (Wold 1997).

On the basis of its dual involvement in replication and
repair, it can be anticipated that RPA not only acts at pre-
incision stages but also during DNA repair synthesis. DNA
polymerase d and e (Pol d and Pol e) have been implicated in
repair synthesis, and both can be stimulated by RPA.
Stimulation was not dependent on specific protein–protein
interactions, as other SSBs could replace RPA (Kenny et al.
1989, 1990; Tsurimoto et al. 1989; Lee et al. 1991). How-
ever, genetic evidence in yeast suggests that RPA and Pol d
do have a direct interaction (Longhese et al. 1994). Possibly,
RPA remains bound to the undamaged strand after exci-
sion, thereby facilitating gap-filling DNA repair synthesis,
which initiates at the 58 incision site.

Finally, the p32 subunit of RPA was found to be phos-
phorylated in a cell cycle-dependent manner and in re-
sponse to DNA damage (Din et al. 1990; Fang and New-
port 1993; Liu and Weaver 1993; Carty et al. 1994).
Whether the phosphorylation status of RPA has any ef-
fect on the efficiency of NER in vivo remains to be es-
tablished (Pan et al. 1995; Ariza et al. 1996).

XPG

The XPG gene encodes a structure-specific endonucle-
ase, which cleaves a variety of artificial DNA substrates,
including bubbles, splayed arms and stem–loops
(O’Donovan and Wood 1993; Scherly et al. 1993;
O’Donovan et al 1994; Cloud et al. 1995; Evans et al.
1997a). In addition, the XPG homolog of S. cerevisiae,
Rad2 (Table 1) can remove single-stranded arms protrud-
ing from duplex DNA in so-called flap substrates (Hab-
raken et al. 1995). XPG-mediated incisions always occur
in one strand of duplex DNA at the 38 side of a junction
with ssDNA. One single-stranded arm, protruding in ei-
ther the 38 or 58 direction, is necessary and sufficient for

correct positioning of XPG incisions (de Laat et al.
1998a). Consistent with this cleavage polarity, XPG
makes the 38 incision during NER (O’Donovan et al.
1994) at the border of the open DNA intermediate (Evans
et al. 1997a). In bubble substrates, XPG requires a mini-
mal opening of 5 nucleotides for incisions (Evans et al.
1997a). The XPG protein is a member of the FEN-1 family
of structure-specific endonucleases, which all cut with
similar polarity at junctions of duplex and unpaired DNA
(for review, see Lieber 1997). XPG shares three regions of
homology (Fig. 1) with the founder of this family, FEN-1,
which is implicated in the processing of Okazaki frag-
ments during replication (Waga et al. 1994b; Rumbaugh et
al. 1997), the completion of a subpathway of BER (Klun-
gland and Lindahl 1997), and possibly DNA end joining of
dsDNA breaks (Lieber 1997). Three aspartic acid and one
glutamic acid residue are absolutely essential for FEN-1
cleavage (Shen et al. 1996, 1997). One of these, Asp-181 in
FEN-1, is required for cleaving but not for binding DNA.
Substitution of the corresponding residue in XPG, Asp-812
by alanine (D812A) induced a selective defect in its nucle-
ase activity (Mu et al. 1997; Wakasugi et al. 1997).

The XPG-mediated 38 incision precedes the 58 incision
made by ERCC1–XPF (Mu et al. 1996). Interestingly,
XPG is not only required for the 38 incision but also for
full open-complex formation, indicating a structural role
in the core NER reaction (Evans et al. 1997b; Mu et al.
1997). Evidence for such a role was provided with the
D812A active-site mutant of XPG, which had to be pre-
sent to detect ERCC1–XPF-mediated 58 incisions in an in
vitro-reconstituted repair assay with purified factors (Mu
et al. 1997; Wakasugi et al. 1997). Furthermore, this
same XPG mutant was found to stabilize a preincision
complex containing XPC–hHR23B, TFIIH, XPA, and
RPA (Mu et al. 1997). Apparently, independent of its
cleavage activity, XPG has a structural function in the
assembly of the NER DNA–protein complex. The re-
ported interactions of XPG with TFIIH and RPA may be
relevant in this respect (Bardwell et al. 1994; He et al.
1995; Iyer et al. 1996; de Laat et al. 1998b). Similar to
FEN-1, XPG was found to interact with proliferating cell
nuclear antigen (PCNA) (Gary et al. 1997), a factor in-
volved in DNA repair synthesis but dispensable for the
incision stage of NER (Shivji et al. 1992). Whereas PCNA
stimulates FEN-1 nuclease activity (Wu et al. 1996), no
effect was found when PCNA was added to XPG nucle-
ase assays (Evans et al. 1997a). Perhaps, this interaction
allows cross talk between the incision and gap-filling
stages of NER. An in vitro interaction was also observed
with CSB (Iyer et al. 1996), possibly relevant to the
mechanism that underlies transcription-coupled repair.
Because various XP-G patients show CS features com-
bined with XP manifestations, XPG, like TFIIH, is antic-
ipated to be a key factor in coupling various repair pro-
cesses to transcription.

ERCC1–XPF

The gene products of ERCC1 (33 kD; van Duin et al.
1986) and XPF (103 kD; Brookman et al. 1996; Sijbers et
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al. 1996a) form a stable complex in vivo and in vitro
(Biggerstaff et al. 1993; van Vuuren et al. 1993; Park et al.
1995b; Sijbers et al. 1996a; de Laat et al. 1998c), involv-
ing amino acid stretches in the carboxyl terminus of
both ERCC1 and XPF (de Laat et al. 1998c). Stability of
the individual components in the cell is dependent on
heterodimer formation (Sijbers et al. 1996b; Yagi et al.
1997). UV-sensitive Chinese hamster cells defective in
either ERCC1 or XPF display also a unique, extreme sen-
sitivity to interstrand cross-linking agents (Busch et al.
1989, 1997; Collins 1993). Removal of such cross-links
probably involves recombination. Consistent with this
idea, the homologous complex in S. cerevisiae, Rad10–
Rad1 (Table 1) is required for a specific mitotic recom-
bination pathway called single-strand annealing (SSA)
(Fishman-Lobell and Haber 1992), possibly via interac-
tions with mismatch repair proteins (Paques and Haber
1997; Sugawara et al. 1997; Bertrand et al. 1998; Bhui-
Kaur et al. 1998). Also, its Schizosaccharomyces pombe
counterpart Swi10–Rad16 is involved in the recombina-
tional events that underlie mating-type switching (Gutz
and Schmidt 1985; Rodel et al. 1992, 1997).

The ERCC1–XPF complex is a structure-specific endo-
nuclease (Sijbers et al. 1996a). Like its yeast homolog
Rad1–Rad10, ERCC1–XPF incises a variety of DNA sub-
strates, including bubbles, stem–loops, splayed arms,
and flaps (Sijbers et al. 1996a; Bessho et al. 1997; de Laat
et al. 1998a), with the latter possibly representing recom-
bination intermediates. A minimal loop size of 4–8
nucleotides is required to detect ERCC1–XPF incisions
(de Laat et al. 1998a). Incisions are always made in one
strand of the duplex at the 58 side of the junction with
ssDNA (Sijbers et al. 1996a; de Laat et al. 1998a). One
single-stranded arm protruding in either the 38 or 58 di-
rection is necessary and sufficient to correctly position
ERCC1–XPF incisions at a DNA junction (de Laat et al.
1998a). In NER, ERCC1–XPF makes the 58 incision, con-
sistent with its cleavage polarity (Matsunaga et al. 1995;
Sijbers et al. 1996a).

A hint that ERCC1 may be the subunit catalyzing
cleavage comes from the presence of a double helix–hair-
pin–helix (HhH) motif in its carboxyl terminus (Sijbers et
al. 1996b). HhH motifs are shared by other structure-
specific endonucleases and have been implicated in
DNA binding (Doherty et al. 1996). Deletion of the ho-
mologous double HhH motif in the carboxyl terminus of
the E. coli NER protein UvrC disrupts 58 incisions with-
out affecting 38 cleavage (Moolenaar et al. 1998). Possi-
bly, this DNA-binding domain positions the catalytic
cleavage site for 58 incision. Intriguingly, recognizable
HhH motifs are not apparent in the yeast homolog of
ERCC1 Rad10.

The 58 incision by ERCC1–XPF follows the XPG-me-
diated 38 incision in NER (Mu et al. 1996). ERCC1–XPF
can be omitted for full open complex formation and 38
incision in vitro and can be added to a preformed incision
complex, containing all other factors, to make the 58
incision (Mu et al. 1996, 1997; Evans et al. 1997b). Thus,
unlike XPG, ERCC1–XPF does not appear to have an
architectural function in the NER protein–DNA com-

plex. Several protein interactions have been reported,
that may account for positioning of ERCC1–XPF during
NER. XPA interacts with the complex (Table 2) (Li et al.
1994a, 1995a; Park and Sancar 1994; Saijo et al. 1996),
mainly via ERCC1 (Fig. 1), although a weak affinity for
XPF also has been reported (Bessho et al. 1997). RPA and
ERCC1 likely bind sequentially to XPA (Saijo et al.
1996). RPA also interacts with ERCC1–XPF (Table 2),
presumably via XPF (Matsunaga et al. 1996; Bessho et al.
1997). This interaction seems particularly important for
positioning the nuclease. Bound to ssDNA, the 38 ori-
ented side of RPA interacts with ERCC1–XPF and
strongly stimulates its nuclease activity, whereas the 58
oriented side of RPA does not interact with the complex
and blocks ERCC1–XPF-mediated incisions (de Laat et
al. 1998b).

XPE

XPE is dispensable for NER in vitro. However, in vivo it
is required, as XP-E patients exhibit XP-like skin abnor-
malities and reduced repair synthesis (Bootsma et al.
1997). The defect in XP-E cells is not assigned unambigu-
ously yet: a unique candidate for the XPE gene is still
lacking. Some but not all XP-E patients lack a functional
damaged DNA-binding (DDB) factor (Chu and Chang
1988; Hirschfeld et al. 1990; Kataoka and Fujiwara 1991;
Keeney et al. 1992, 1994; Nichols et al. 1996). DDB is a
heterodimeric protein complex with 127- and 48-kD sub-
units and with affinity for certain types of DNA lesions
(Hwang and Chu 1993; Keeney et al. 1993; Reardon et al.
1993), hinting at a function in damage recognition in
NER. Some, but not all, patients carry a mutation in the
gene for the small subunit (Nichols et al. 1996), which is
under damage-inducible control by p53 (Hwang et al.
1999). This explains the partial defect in GG–NER in
p53−/− cells (Ford and Hanawalt 1997), supporting the
idea that DDB facilitates the identification of lesions
that are poorly recognized by the XPC–hHR23B com-
plex, such as UV-induced CPD dimers (Hwang et al.
1999).

DNA repair synthesis

The incision and DNA synthesis stages of NER can be
separated in vitro, and the only factor in common is
RPA, which may remain bound to the undamaged strand
to facilitate replication. In vitro studies with antibodies
and chemical inhibitors revealed that both DNA Pol d
and Pol e) function in NER DNA synthesis (Dresler and
Frattini 1986; Nishida et al. 1988; Hunting et al. 1991;
Coverley et al. 1992; ). A similar observation was made
in vivo in yeast (Budd and Campbell 1995), but the rela-
tive contribution of each remains to be determined. The
requirement of PCNA is consistent with repair synthesis
by these polymerases (Shivji et al. 1992), as it serves as a
processivity factor for both, in conjunction with replica-
tion factor C (RF-C). The combination of RPA, PCNA,
RF-C (five subunits) and either Pol d or Pol e was suffi-
cient for repair synthesis in vitro (Shivji et al. 1995).

de Laat et al.

774 GENES & DEVELOPMENT

 on October 23, 2006 www.genesdev.orgDownloaded from 

http://www.genesdev.org


DNA synthesis by Pol d and Pol e and their cofactors
PCNA and RF-C has been studied extensively (for re-
views and original references, see Budd and Campbell
1997; Hindges and Hübscher 1997; Jonsson and Hüb-
scher 1997; Wood and Shivji 1997). Briefly, RF-C prefer-
entially binds to 38 termini of DNA primers and facili-
tates the loading of PCNA, which forms a homotrimeric
ring-shaped clamp that can track along duplex DNA.
This complex serves as a docking platform for both Pol d
and Pol e, which upon binding form holoenzymes with
the cofactors that efficiently can replicate ssDNA.

PCNA might serve as a mediator between cell cycle
control and DNA repair. It interacts with p21, a cdk in-
hibitor that is up-regulated in a p53-dependent manner
upon DNA damage (Waga et al. 1994a). This interaction
inhibits DNA replication but does not affect DNA re-
pair, which may contribute to the induction of replica-
tional arrest to allow repair and prevent mutagenesis (Li
et al. 1994b).

The final step in NER is ligation of the 58 end of the
newly synthesized patch to the original sequence. This
step is probably carried out by DNA ligase I. Interestingly,
a single case of DNA ligase I deficiency in humans has
been described. This patient not only suffered from symp-
toms probably arising from (mild) defects in semiconserva-
tive replication but also showed increased sensitivity to
several DNA-damaging agents, including UV light (Barnes
et al. 1992; Prigent et al. 1994). (For a review on mamma-
lian DNA ligases, see Tomkinson and Levin 1997.)

Biochemical dissection of NER

Eukaryotic NER removes damage as part of a 24- to 32-
nucleotide oligomer (Huang et al. 1992; Moggs et al.
1996), depending on the type of damage and the sequence
context. Reconstitution of the NER reaction with puri-
fied proteins allowed the definition of a minimal set of
proteins required for the entire GG–NER reaction
(Aboussekhra et al. 1995; Mu et al. 1995, 1996). The re-
pair synthesis stage merely involves general replication
factors, and their action has been discussed above. Here,
we will focus on the crucial events prior to repair syn-
thesis. Recent studies on damage recognition, open com-
plex formation and nuclease positioning, together with
data obtained from genetic and cell biological studies,
have allowed a detailed interpretation of the individual
steps that lead to dual incision. All these events are com-
posed into a molecular model shown in Figure 2.

Damage sensing in GG–NER and TC–NER

As discussed above, the XPC–hHR23B complex is the
first NER factor to detect a lesion and recruit the rest of
the repair machinery to the damaged site in GG–NER
(Sugasawa et al. 1998). The complex has affinity for a
variety of NER lesions including UV-induced injury and
chemical damage, such as cisplatin and N-acetyl-ace-
toxyaminofluorene (AAF) adducts. DNase I footprinting
assays revealed specific binding to a 6-4PP (Sugasawa et

al. 1998). Probably, XPC is the subunit responsible for
discerning ‘right from wrong’ in DNA, but at this mo-
ment it is unclear how this protein senses the wide range
of structurally unrelated lesions in a vast excess of nor-
mal DNA. For some types of damages, such as the poorly
repaired CPD lesions, other proteins like the UV–DDB
protein complex may assist in lesion detection (see
above). Furthermore, XPA, as another NER factor with
preferential affinity for several types of injury, likely acts
as a damage verifier in subsequent stages in the NER
reaction (Sugasawa et al. 1998).

How does XPC–hHR23B recruit other repair factors in
GG–NER? Evans et al. (1997b) reported that XPC and
TFIIH are the only factors absolutely required for helix
distortion around the lesion. This may be sufficient for
the rest of the repair machinery to act, as locally pre-
melted lesions are repaired efficiently in the absence of
XPC–hHR23B (Mu and Sancar 1997; Mu et al. 1997).
Thus, XPC–hHR23B may slightly increase single strand-
edness at a damaged site to facilitate entering of TFIIH
and other repair factors. Perhaps a similar helical distor-
tion underlies the observation that artificial cholesterol
lesions bypass the need for XPC–hHR23B (Mu et al.
1996). In addition, XPC–hHR23B may recruit other re-
pair factors through specific protein–protein interac-
tions. The complex has only been reported to interact
(weakly) with TFIIH (Drapkin et al. 1994). In yeast, Rad4
(XPC)–TFIIH, Rad23–TFIIH, and Rad23–Rad14 (XPA) in-
teractions have been claimed (Bardwell et al. 1994;
Guzder et al. 1995).

XPC–hHR23B is not involved in transcription-coupled
repair. This suggests that other factors perform damage
detection in TC–NER and provide a DNA substrate that
can be processed by the rest of the repair machinery.
Elongating RNA Pol II is blocked by many lesions in the
transcribed strand. This makes it an efficient damage
sensor (Donahue et al. 1994; Hanawalt and Mellon 1993).
The transcription bubble present at the lesion can serve
as a substrate for XPC–hHR23B-independent repair
(Hanawalt and Mellon 1993; Mu and Sancar 1997; Mu et
al. 1997). In vivo XPC–hHR23B competes with elongat-
ing Pol II for detecting lesions in transcribed strands;
depending on their damage detection rates and the in-
tensity of transcription, lesions will be repaired by either
GG–NER or TC–NER. In agreement with this model,
removal of 6-4PPs by GG–NER is very fast (Mitchell and
Nairn 1989), and TC–NER does not contribute signifi-
cantly to the repair rate (van Hoffen et al. 1995). On the
other hand, repair of CPDs by GG–NER is much slower.
Consequently, TC–NER accounts for the fast repair of
these lesions from actively transcribed strands (Mellon
et al. 1987; Mellon and Hanawalt 1989). On the other
side of the spectrum, lesions are to be expected that fully
depend on TC–NER, due to failing recognition by GG–
NER. Such a condition is fulfilled by DNA damage
caused by the mushroom drug illudin S (N.G.J. Jaspers,
unpubl.). In comparison to UV, illudin-induced NER lev-
els are quite low, even in normal cells, and require the
presence of al TC–NER factors, including CSA and CSB,
but are independent of XPC and XPE.
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Open complex formation

Once lesions have been traced, an open DNA complex is
formed by the coordinated activities of XPC–hHR23B,
TFIIH, XPA, and RPA. The ATP-dependent helicases of
TFIIH have a key role in this process, whereas XPG
seems to stabilize the complex (Evans et al. 1997a,b; Mu
et al. 1997; Wakasugi et al. 1997). The fully opened in-
termediate is formed asymmetrically around the lesion,
skewed to the 58 site. Permanganate footprinting studies
on damaged DNA substrates in the presence of repair-
deficient cell extracts suggest that XPC–hHR23B and
TFIIH together are required for an initial opening of <10
nucleotides, and that addition of XPA, RPA, and XPG is
needed to obtain full opening of ∼25 nucleotides (Evans
et al. 1997a,b). Other studies using similar techniques
but with purified factors suggested that all four preinci-
sion factors are necessary and sufficient to obtain an in-
termediate opening of 10–20 nucleotides positioned
rather symmetrically around the lesion; full opening was

only observed in conjunction with dual incision (Mu et
al. 1997). These discrepancies may be due to differences
in experimental procedures and/or DNA substrates or
the limited sensitivity of permanganate acting only on
thymine residues. Both studies, however, indicate a two-
step unwinding model with an ATP-dependent, TFIIH-
mediated initial opening and a subsequent extension of
the open complex 58 away from the lesion. Such a
mechanism would be analogous to TFIIH-dependent pro-
moter opening in transcription initiation (Holstege et al.
1996, 1997; Yan and Gralla 1997).

How do the various factors contribute to opening? A
number of possibilities exist: (1) TFIIH harbors two op-
positely directed, ATP-dependent helicase subunits XPB
and XPD, and is the motor driving the strand separation.
In transcription initiation, TFIIH-dependent opening
spans initially ∼10–15 nucleotides (Holstege et al. 1996,
1997), which is similar to the size of initial opening in
repair (Evans et al. 1997b; Mu et al. 1997). The fact that
opening is restricted to 10 to 20 nucleotides may reflect

Figure 2. Molecular model for the incision stage
of NER. (I) XPC–hHR23B (C) senses DNA helix-
distorting NER lesions in global genome NER
(GG–NER) leading to conformational alterations of
the DNA. In transcription-coupled repair (TC–
NER) lesions are detected by elongating RNA Pol II
blocked by, e.g., CPDs (NER lesions) and thymine
glycols (non-NER lesion). (II) (Left) XPC–hHR23B
at lesion attracts TFIIH [and possibly XPG (G)].
TFIIH creates a 10- to 20-nucleotide opened DNA
complex around the lesion by virtue of its helicases
XPB and XPD; this step requires ATP. XPC–
hHR23B may be released at this or one of the sub-
sequent stages. (Right) CSA, CSB, TFIIH, XPG, and
possibly other cofactors displace the stalled Pol II
from the lesion, which now becomes accessible for
further repair processing; depending on the type of
lesion, repair is completed by NER or by other re-
pair pathways. (III) XPA (A) and RPA stabilize the
10- to 20-nucleotide opening and position other
factors. XPA binds to the damaged nucleotides,
RPA to the undamaged DNA strand. Possibly, RPA
binds in its 8- to 10-nucleotide binding mode and
transition to the 30-nucleotide binding mode (RPA
stretching) plays an important role in full open
complex formation. XPG stabilizes the fully
opened complex. (IV) XPG, positioned by TFIIH
and RPA, makes the 38 incision. ERCC1–XPF (F),
positioned by RPA and XPA, makes the second in-
cision 58 of the lesion. (V) Dual incision is followed
by gap-filling DNA synthesis and ligation. Drawn
contacts between molecules reflect reported pro-
tein–protein interactions.
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an intrinsic limitation of TFIIH-mediated strand separa-
tion. In addition to unwinding, TFIIH may have a struc-
tural role in the preincision complex, as premelted le-
sions still require TFIIH for repair (Mu and Sancar 1997;
Mu et al. 1997). (2) XPA might account for correct posi-
tioning of the opened DNA–protein preincision com-
plex, because it can bind the DNA adduct in an open
conformation and interacts with both TFIIH and RPA
(see above). (3) RPA may stabilize the unwound DNA
intermediate. Most likely it binds and protects the un-
damaged strand in repair (de Laat et al. 1998b), and it is
tempting to implicate the ssDNA-binding characteris-
tics of RPA in the creation of a full open repair complex.
The 58-oriented side of RPA contains a strong DNA-
binding domain that accounts for initial association to 8-
to 10-nucleotide DNA regions (Blackwell and Borowiec
1994; Blackwell et al. 1996; de Laat et al. 1998b). Stable
binding of RPA to DNA requires ∼30-nucleotide single-
stranded regions (Kim et al. 1992; Blackwell and Borow-
iec 1994). Interestingly, initial opening in NER exposes
∼10–20 nucleotides of the undamaged strand, thus creat-
ing an ideal docking site for the 58-oriented side of RPA.
We propose that subsequent RPA stretching in the 38
direction contributes to the formation of a fully opened
complex, which matches the observed ∼30-nucleotide
open intermediate.

It is not known whether repair in vivo involves se-
quential assembly of individual factors or loading of a
complete ‘repairosome’ onto a DNA lesion. In either
case, the repair factors are likely to act in a defined order.
It is interesting to note that in mammals only TFIIH has
been reported to interact with the repair recruitment fac-
tor XPC–hHR23B (Drapkin et al. 1994). Because XPC and
TFIIH are the only factors indispensable for any confor-
mational change around a lesion, Evans et al. (1997b)
proposed that XPC–hHR23B and TFIIH may accomplish
initial repair opening. Thus, TFIIH may well be the sec-
ond factor acting at the site of damage. This would imply
that TFIIH facilitates the recruitment of XPA to the le-
sion, rather than the other way around (Park et al. 1995a;
Nocentini et al. 1997). Although merely speculation,
TFIIH also seems an attractive candidate to be the first
‘repair’ factor acting in the XPC–hHR23B-independent
TC–NER pathway, given its intimate link with both
transcription and repair. Also, TFIIH has been shown to
enter early stalled Pol II complexes (Dvir et al. 1997).

Dual repair incision

Following lesion demarcation, the actual incisions are
made by the structure-specific endonucleases XPG (38
incision) and ERCC1–XPF (58 incision) (O’Donovan et al.
1994; Matsunaga et al. 1995; Sijbers et al. 1996a). Inci-
sions are made asymmetrically around the lesion, with
the 38 incision 2–8 nucleotides and the 58 incision 15–24
nucleotides away from the lesion, corresponding to the
borders of the open complex (Huang et al. 1992; Moggs et
al. 1996; Evans et al. 1997a). The exact incision positions
seem to depend in part on the type of lesion (Matsunaga
et al. 1995; Moggs et al. 1996). Although incisions occur

near synchronously, consensus exists that the 38 incision
precedes the 58 incision (Mu et al. 1996). In agreement
with this order, XPG-mediated cleavage can be detected
in the absence of ERCC1–XPF, but ERCC1–XPF incision
activity requires the structural presence, but not the
catalytic activity, of XPG (Mu et al. 1997; Wakasugi et al.
1997). Also, limited opening of 10–20 nucleotides is suf-
ficient for XPG cleavage, whereas ERCC1–XPF cutting
in NER requires full opening of 25–30 nucleotides (Evans
et al. 1997b; Mu et al. 1996, 1997).

In principle, XPG and ERCC1–XPF are able to cut both
strands of an opened DNA intermediate (O’Donovan et
al. 1994; Sijbers et al. 1996a), but during repair the nucle-
ases are directed to the damaged strand only. RPA ap-
pears to have a crucial role in nuclease positioning. Each
side of this molecule, when oriented on ssDNA, inter-
acts with a distinct nuclease. In fact, bound to the un-
damaged strand, RPA alone is sufficient to confer strand
specificity to ERCC1–XPF-mediated incisions (de Laat et
al. 1998b). XPA’s interaction with both RPA and
ERCC1–XPF may facilitate or stabilize the positioning of
ERCC1–XPF and RPA onto the damaged strand (Li et al.
1994a, 1995a,b; Park and Sancar 1994; Saijo et al. 1996).
RPA presumably contributes, but is not sufficient, to
confer strand specificity to XPG. Despite a specific in-
teraction with RPA, XPG incisions in the damaged
strand are not stimulated by RPA, nor does RPA inhibit
XPG incisions in the undamaged strand (de Laat et al.
1998b). TFIIH is an attractive candidate to be involved in
XPG positioning. Physical interaction between these
two NER components has been reported both in yeast
and in man (Bardwell et al. 1994; Habraken et al. 1996;
Iyer et al. 1996). In addition, strikingly similar CS fea-
tures are associated with mutations in both factors.
XPC–hHR23B, on the other hand, seems not directly in-
volved in coordinating either of the nucleases, as this
factor probably leaves the repair complex prior to inci-
sions (Wakasugi and Sancar 1998).

The 58 incision by ERCC1–XPF, which completes the
incision stage, leaves a hydroxyl (-OH)-group at the 38
terminus of the primer strand and no additional modifi-
cations are required to start DNA synthesis at this side
of the gap (Sijbers et al. 1996a). In vitro, the oligonucleo-
tide containing the damage can be released by the NER
incision factors in the absence of DNA repair synthesis
(Mu et al. 1996, 1997). Probably, most NER proteins
leave prior to repair synthesis. However, RPA is required
for gap-filling DNA synthesis to protect the template
strand against nucleases and/or to facilitate DNA repli-
cation. Replication does not result in strand displace-
ment beyond the patch but, rather, stops at the 38 cleav-
age site.

Coupling of transcription to different repair pathways;
a central role for TFIIH and XPG

Transcription-coupled repair is well documented for
elongation-stalling NER lesions for which GG–NER is
too slow. However, evidence is accumulating that also
transcription-blocking damage targeted by other repair
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systems is subject to preferential repair, including oxi-
dative damage such as thymine glycols (Leadon and
Lawrence 1992; Leadon and Cooper 1993; Cooper et al.
1997). Thus, all lesions that interfere with transcription
elongation may well be a substrate for transcription-
coupled repair (see also Tijsterman et al. 1997; Tu et al.
1997). Cells from XP-A, XP-F, and XP-G patients, which
display only XP features, are defective in transcription-
coupled repair of typical NER lesions, but appear normal
in transcription-coupled repair of oxidative damage re-
moved by other repair pathways (Cooper et al. 1997). In
contrast, cells from CS-A and CS-B patients are defective
in transcription-coupled repair of both CPDs and at least
some types of oxidative damage lesions (Venema et al.
1990b; Leadon and Lawrence 1992; Leadon and Cooper
1993; van Hoffen et al. 1993; Cooper et al. 1997). This
suggests that CS is linked to a more general transcrip-
tion-coupled repair defect not limited to TC–NER. Thus,
it seems that more than one repair pathway utilizes the
damage-sensing capacity of elongating Pol II. It should be
noted also that mismatch repair proteins have been im-
plicated in the coupling between transcription and repair
(Mellon et al. 1996; Leadon and Avrutskaya 1997, 1998).

Interestingly, a subclass of XP-B, XP-D, and XP-G pa-
tients displays CS features in combination with XP.
Cells from these individuals appear deficient in the tran-
scription-coupled removal of both UV-induced lesions
and oxidative damage (Cooper et al. 1997), consistent
with the idea that the repair defect in CS involves tran-
scription coupling to multiple repair systems. This dis-
tinguishes the factors involved, TFIIH and XPG, from
the other core NER proteins and links them with cou-
pling of transcription to other repair pathways as well.
One possible explanation is that these factors play a role
in a stage of transcription-coupled repair common to dif-
ferent repair processes. Hanawalt and Mellon (1993) ar-
gued that for TC–NER, the stalled Pol II complex has to
retract or dissociate to allow access of repair proteins to
the lesion. Assuming that defects in this process under-
lie the extensive and perhaps even complete defect in
transcription-repair coupling observed in CS cells, we
propose that TFIIH and XPG, like CSA and CSB, func-
tion in the displacement of Pol II from the damaged site.
CSB was recently found to be associated to Pol II, most
likely in the elongation mode (Selby and Sancar 1997;
Tantin et al. 1997; van Gool et al. 1997a). Possible roles
for CSA and CSB in transcription-repair coupling have
been discussed recently (van Gool et al. 1997b) and will
not be reiterated here. In view of the discussion above, it
is interesting to speculate on the role of XPG and TFIIH
in this process.

Elongating Pol II complexes track along the template
strand in a 38 → 58 direction and are expected to position
a transcription bubble 38 of obstructive lesions. In GG–
NER, recruitment of TFIIH to the damaged site presum-
ably depends on XPC–hHR23B-mediated changes in
DNA conformation and protein interactions, whereas
XPG recruitment depends on the formation of an opened
DNA complex. In transcription-coupled repair the Pol
II-induced DNA opening 38 of the lesion may be acces-

sible to TFIIH and XPG in the absence of other NER
factors. Thus, a stalled Pol II complex may attract TFIIH
and XPG independent of the type of lesion causing the
block. The in vitro observed interactions between iso-
lated TFIIH subunits and CSA (Henning et al. 1995),
XPG and CSB (Iyer et al. 1996), and XPG and TFIIH (Iyer
et al. 1996; Mu et al. 1995) may have a role in this re-
cruitment.

The apparently crucial role of the nuclease XPG in
transcription-repair coupling is intriguing. The XP-type
XP-G patient XP125LO carries a defect in GG–NER and
in TC–NER of UV-induced lesions but still displays tran-
scription-coupled repair of oxidative damage (Cooper et
al. 1997). The NER defect is caused by an Ala-792 → Val
substitution next to a presumed catalytic residue, Glu-
791, in nuclease domain I of XPG (see Fig. 1) (Nouspikel
and Clarkson 1994; Shen et al. 1996, 1997). Presumably
the mutant protein is inactive in cleavage (Cooper et al.
1997; Nouspikel and Clarkson 1994; Nouspikel et al.
1997; Reardon et al. 1997). On the basis of this assump-
tion, Cooper et al. (1997) suggested that the requirement
of XPG for transcription-coupled repair of oxidative dam-
age is independent of its incision activity and may de-
pend on structural properties. Defects in the functions of
XPG and TFIIH in transcription-repair coupling are an-
ticipated to interfere with the release of trapped tran-
scription caused by (oxidative) damage (Hanawalt and
Mellon 1993; van Gool et al. 1997b).

Excision repair and chromatin

As is apparent from this review, in vitro NER is fairly
well understood. However, most studies have utilized
naked DNA as substrate. A major challenge will be to
understand the NER process in the context of chromatin,
preferably in a living cell. Compaction of DNA into
nucleosomes and higher order structures will certainly
affect the accessibility of lesions. Repair on the nontran-
scribed strand of an active gene was found to be rapid in
linker DNA and slow in sequences occupied by nucleo-
somes, whereas TC–NER of the transcribed strand ap-
peared independent of chromatin organization in vivo
(Wellinger and Thoma 1997). Two NER components
may be important in this context. Purified DDB failed to
stimulate repair of naked DNA by XP-E cell extracts, but
partially corrected the repair defect upon microinjection
in living XP-E cells, suggesting a function of this factor
in the repair of UV lesions in chromatin (Rapic Otrin et
al. 1998). In yeast, a complex of Rad7–Rad16 (Guzder et
al. 1997) functions specifically in GG–NER (Verhage et
al. 1994, 1996; Mueller and Smerdon 1995). On the basis
of sequence homology, Rad16 belongs to the Swi2/Snf2
subfamily of DNA-dependent ATPases, a group of pro-
teins implicated in chromatin remodelling. Possibly,
DDB and as-yet-unidentified human homologs of Rad7–
Rad16 are involved in lesion-dependent chromatin re-
modeling in an early stage of global excision repair in
vivo.

Repair rates probably depend on both the concentra-
tion of repair factors and their affinity for lesions. For
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some NER factors we estimated the presence of 104–105

molecules per nucleus. This indicates that one repair
molecule or complex still has to guard 104–105 bp of
DNA in human cells. As repair in vivo is highly efficient,
repair proteins can be anticipated to act in a highly co-
ordinated fashion in the context of chromatin. Transient
association of damaged DNA with the nuclear matrix
has been reported (Koehler and Hanawalt 1996). It is not
known whether repair in vivo involves the sequential
assembly of individual factors or loading of a complete
repairosome onto a DNA lesion. By bleaching green fluo-
rescent protein (GFP)-tagged ERCC1–XPF in a subcom-
partment of the nucleus of a living cell and measuring
the rate of influx of fluorescent complexes in the
bleached region, it was found that ERCC1–XPF diffuses
very rapidly through the nucleus. The diffusion constant
is compatible with the majority of ERCC1–XPF being
free (i.e., not part of a large NER holocomplex). A signifi-
cant fraction of ERCC1–XPF complexes became tempo-
rarily immobilized on UV exposure as the consequence
of actual engagement in repair (A. Houtsmuller, W. Ver-
meulen, and J.H.J. Hoeijmakers, unpubl.). These findings
support a model for NER in vivo involving successive
assembly of repair factors in which freely diffusing
ERCC1/XPF participates in a distributive fashion. It
would be interesting to see whether DNA damage-bind-
ing factors like DDB, XPC–hHR23B, and XPA, as well as
TFIIH display a similar or a different behavior.
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