12 research outputs found

    The Importance of Social Networks in Neurosurgery Training in Low/Middle income countries

    Get PDF
    Neurosurgery is evolving with new techniques and technologies, relies heavily on high-quality education and training. Social networks like Twitter, Facebook, Instagram and LinkedIn have become integral to this training. These platforms enable sharing of surgical experiences, fostering global knowledge-sharing and collaboration among neurosurgeons. According to the PICO format, the target population (P) for the purpose of this paper are medical students, neurosurgical residents and consultants on the role of social media (I) in neurosurgery among Low-Middle income countries (C) with the main outcome to understand the collaborative domain of learning.This cross-sectional survey, conducted in June-July 2023, involved 210 medical students, neurosurgery residents, fellows, and practicing neurosurgeons from low and middle-income countries. A structured questionnaire assessed social network usage for neurosurgery training, covering demographic details, usage frequency, and purposes like education, collaboration, and communication. Participants rated these platforms' effectiveness in training on a 1-5 scale. Data collection employed emails, social media groups, and direct messaging, assuring respondent anonymity. The survey aimed to understand and improve social networks' use in neurosurgery, focusing on professional development, challenges, and future potential in training.In a survey of 210 participants from low and middle-income countries, 85.5% were male, 14.5% female, with diverse roles: 42.9% neurosurgery residents, 40% practicing neurosurgeons, 14.6% medical students, and 2.4% other healthcare professionals. Experience ranged from 0 to 35 years, with Mexico, Nigeria, and Kenya being the top participating countries. Most respondents rated neurosurgery training resources in their countries as poor or very poor. 88.7% used social media professionally, predominantly WhatsApp and YouTube. Content focused on surgical videos, research papers, and webinars. Concerns included information quality and data privacy. Interactive case discussions, webinars, and lectures were preferred resources, and most see a future role for social media in neurosurgery training.Our study underscores the crucial role of social media in neurosurgery training and practice in low and middle-income countries (LMICs). Key resources include surgical videos, research papers, and webinars. While social media offers a cost-effective, global knowledge-sharing platform, challenges like limited internet access, digital literacy, and misinformation risks remain significant in these regions

    Latex vascular injection as method for enhanced neurosurgical training and skills

    Get PDF
    BackgroundTridimensional medical knowledge of human anatomy is a key step in the undergraduate and postgraduate medical education, especially in surgical fields. Training simulation before real surgical procedures is necessary to develop clinical competences and to minimize surgical complications.MethodsLatex injection of vascular system in brain and in head-neck segment is made after washing out of the vascular system and fixation of the specimen before and after latex injection.ResultsUsing this latex injection technique, the vascular system of 90% of brains and 80% of head-neck segments are well-perfused. Latex-injected vessels maintain real appearance compared to silicone, and more flexible vessels compared to resins. Besides, latex makes possible a better perfusion of small vessels.ConclusionsLatex vascular injection technique of the brain and head-neck segment is a simulation model for neurosurgical training based on real experiencing to improve surgical skills and surgical results

    Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors

    No full text
    Diagnosing brain tumors, especially malignant variants, such as glioblastoma, medulloblastoma, or brain metastasis, presents a considerable obstacle, while current treatment methods often yield unsatisfactory results. The monitoring of individuals with brain neoplasms becomes burdensome due to the intricate tumor nature and associated risks of tissue biopsies, compounded by the restricted accuracy and sensitivity of presently available non-invasive diagnostic techniques. The uncertainties surrounding diagnosis and the tumor’s reaction to treatment can lead to delays in critical determinations that profoundly influence the prognosis of the disease. Consequently, there exists a pressing necessity to formulate and validate dependable, minimally invasive biomarkers that can effectively diagnose and predict brain tumors. Cell-free microRNAs (miRNAs), which remain stable and detectable in human bodily fluids, such as blood and cerebrospinal fluid (CSF), have emerged as potential indicators for a range of ailments, brain tumors included. Numerous investigations have showcased the viability of profiling cell-free miRNA expression in both CSF and blood samples obtained from patients with brain tumors. Distinct miRNAs demonstrate varying expression patterns within CSF and blood. While cell-free microRNAs in the blood exhibit potential in diagnosing, prognosticating, and monitoring treatment across diverse tumor types, they fall short in effectively diagnosing brain tumors. Conversely, the cell-free miRNA profile within CSF demonstrates high potential in delivering precise and specific evaluations of brain tumors

    MiRNAs and lncRNAs in the regulation of innate immune signaling

    No full text
    The detection and defense against foreign agents and pathogens by the innate immune system is a crucial mechanism in the body. A comprehensive understanding of the signaling mechanisms involved in innate immunity is essential for developing effective diagnostic tools and therapies for infectious diseases. Innate immune response is a complex process involving recognition of pathogens through receptors, activation of signaling pathways, and cytokine production, which are all crucial for deploying appropriate countermeasures. Non-coding RNAs (ncRNAs) are vital regulators of the immune response during infections, mediating the body's defense mechanisms. However, an overactive immune response can lead to tissue damage, and maintaining immune homeostasis is a complex process in which ncRNAs play a significant role. Recent studies have identified microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as key players in controlling gene expression in innate immune pathways, thereby participating in antiviral defenses, tumor immunity, and autoimmune diseases. MiRNAs act by regulating host defense mechanisms against viruses, bacteria, and fungi by targeting mRNA at the post-transcriptional level, while lncRNAs function as competing RNAs, blocking the binding of miRNAs to mRNA. This review provides an overview of the regulatory role of miRNAs and lncRNAs in innate immunity and its mechanisms, as well as highlights potential future research directions, including the expression and maturation of new ncRNAs and the conservation of ncRNAs in evolution

    Macrophages in Recurrent Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor Microenvironment

    No full text
    Glioblastoma (GBM) is a common and highly malignant primary tumor of the central nervous system in adults. Ever more recent papers are focusing on understanding the role of the tumor microenvironment (TME) in affecting tumorigenesis and the subsequent prognosis. We assessed the impact of macrophages in the TME on the prognosis in patients with recurrent GBM. A PubMed, MEDLINE and Scopus review was conducted to identify all studies dealing with macrophages in the GBM microenvironment from January 2016 to December 2022. Glioma-associated macrophages (GAMs) act critically in enhancing tumor progression and can alter drug resistance, promoting resistance to radiotherapy and establishing an immunosuppressive environment. M1 macrophages are characterized by increased secretion of proinflammatory cytokines, such as IL-1ß, tumor necrosis factor (TNF), IL-27, matrix metalloproteinase (MMPs), CCL2, and VEGF (vascular endothelial growth factor), IGF1, that can lead to the destruction of the tissue. In contrast, M2 is supposed to participate in immunosuppression and tumor progression, which is formed after being exposed to the macrophage M-CSF, IL-10, IL-35 and the transforming growth factor-ß (TGF-ÎČ). Because there is currently no standard of care in recurrent GBM, novel identified targeted therapies based on the complex signaling and interactions between the glioma stem cells (GSCs) and the TME, especially resident microglia and bone-marrow-derived macrophages, may be helpful in improving the overall survival of these patients in the near future

    Anatomical Variations of the Sciatic Nerve Exit from the Pelvis and Its Relationship with the Piriformis Muscle: A Cadaveric Study

    No full text
    Background: The sciatic nerve (SN) is the widest nerve of the human body that exits the pelvis through the greater sciatic foramen, usually below the piriformis muscle (PM), and descends between the greater trochanter of the femur and ischial tuberosity of the pelvis to the knee. The aim of this paper is to examine and identify the SN variations in relation to the PM, its prevalence, pattern, and course. Methods: A prospective-descriptive cross-sectional study was carried out to determine the frequency of anatomical variations in the exit of the SN in relation with the PM in 20 anatomical bodies (corpses) of both genders, in equal numbers. Results: The dissection of 40 SNs in corpses of both sexes in equal numbers showed that the SN exited inferior to the PM in 37 lower limbs (92.5%); between the fascicles of the PM and inferior to the PM in two lower limbs (5%); and in one thigh, between the fascicles of the PM and superior to the PM (2.5%). Our study reported that the SN divides in its terminal branches more commonly in the proximal part of the popliteal fossa in 55% of cases, in the gluteal region in 35% of cases, and in the middle third of the thigh in 10% of cases. Conclusions: Anatomical variations of the SN in relation to the PM are challenging for the diagnostic and therapeutic procedure in many clinical and surgical cases. Rapid recognition of the SN changes makes surgical approaches more accurate and effective. Our study confirmed that the SN exits the pelvis most commonly below the PM, although some anatomical variations may occur

    Analyzing the Clinical Potential of Stromal Vascular Fraction: A Comprehensive Literature Review

    No full text
    Background: Regenerative medicine is evolving with discoveries like the stromal vascular fraction (SVF), a diverse cell group from adipose tissue with therapeutic promise. Originating from fat cell metabolism studies in the 1960s, SVF’s versatility was recognized after demonstrating multipotency. Comprising of cells like pericytes, smooth muscle cells, and, notably, adipose-derived stem cells (ADSCs), SVF offers tissue regeneration and repair through the differentiation and secretion of growth factors. Its therapeutic efficacy is due to these cells’ synergistic action, prompting extensive research. Methods: This review analyzed the relevant literature on SVF, covering its composition, action mechanisms, clinical applications, and future directions. An extensive literature search from January 2018 to June 2023 was conducted across databases like PubMed, Embase, etc., using specific keywords. Results: The systematic literature search yielded a total of 473 articles. Sixteen articles met the inclusion criteria and were included in the review. This rigorous methodology provides a framework for a thorough and systematic analysis of the existing literature on SVF, offering robust insights into the potential of this important cell population in regenerative medicine. Conclusions: Our review reveals the potential of SVF, a heterogeneous cell mixture, as a powerful tool in regenerative medicine. SVF has demonstrated therapeutic efficacy and safety across disciplines, improving pain, tissue regeneration, graft survival, and wound healing while exhibiting immunomodulatory and anti-inflammatory properties

    Expanding Access to Microneurosurgery in Low-Resource Settings: Feasibility of a Low-Cost Exoscope in Transforaminal Lumbar Interbody Fusion

    No full text
    Objectives Less than a quarter of the world population has access to microneurosurgical care within a range of 2 hours. We introduce a simplified exoscopic visualization system to achieve optical magnification, illumination, and video recording in low-resource settings. Materials and Methods We purchased a 48 megapixels industrial microscope camera with a heavy-duty support arm, a wide field c-mount lens, and an LED ring light at a total cost of US$ 125. Sixteen patients with lumbar degenerative disk disease were divided into an exoscope group and a conventional microscope group. In each group we performed four open and four minimally invasive transforaminal lumbar interbody fusion procedures. We further conducted a questionnaire-based assessment of the user experience. Results The overall user experience was positive. The exoscope achieved similar postoperative improvement with comparable blood loss and operating time as the conventional microscope. It provided a similar image quality, magnification and illumination. Yet, the lack of stereoscopic perception and the cumbersome adjustability of the camera position and angle resulted in a shallow learning curve. Most users strongly agreed that the exoscope would significantly improve surgical teaching. Over 75% reported they would recommend the exoscope to colleagues and all users saw its great potential for low-resource environments. Conclusion Our low-budget exoscope is technically non-inferior to the conventional binocular microscope and purchasable at a significantly lower price. It may thus help expand access to neurosurgical care and training worldwide

    Comparative Analysis of Stromal Vascular Fraction and Alternative Mechanisms in Bone Fracture Stimulation to Bridge the Gap between Nature and Technological Advancement: A Systematic Review

    No full text
    Background: Various stimulation methods, including electrical, ultrasound, mechanical, and biological interventions, are explored, each leveraging intricate cellular and molecular dynamics to expedite healing. The advent of stromal vascular fraction (SVF) marks a significant stride, offering multifarious benefits in bone healing, from enhanced bone formation to optimal vascular integration, drawing a harmonious balance between innate mechanisms and scientific advancements. Methods: This systematic review was conducted focusing on literature from 2016 to 2023 and encompassing various bone healing stimulation mechanisms like SVF, electrical, ultrasound, and mechanical stimulation. The extracted data underwent meticulous synthesis and analysis, emphasizing comparative evaluations of mechanisms, applications, and outcomes of each intervention. Results: The reviewed studies reveal the potential of SVF in bone fracture healing, with its regenerative and anti-inflammatory effects. The purification of SVF is crucial for safe therapeutic use. Characterization involves flow cytometry and microscopy. Studies show SVF’s efficacy in bone regeneration, versatility in various contexts, and potential for clinical use. SVF appears superior to electrical, ultrasound, and mechanical stimulation, with low complications. Conclusions: This review compares bone healing methods, including SVF. It provides valuable insights into SVF’s potential for bone regeneration. However, due to limited human studies and potential bias, cautious interpretation is necessary. Further research is essential to validate these findings and determine the optimal SVF applications in bone healing

    Giant invasive intradural extramedullary lumbar schwannoma: A case report and literature review

    No full text
    Schwannomas are benign nerve sheath tumors that arise from Schwann cells, which are responsible for producing the myelin sheath that surrounds nerves. They are typically slow-growing and can occur in various locations in the body, including the lumbar region of the spine. We present a case of giant invasive intradural extramedullary schwannoma managed with posterior lumbar interbody fusion (PLIF) and laminectomy with excellent results. A 58-year-old man presented with lower back pain radiating to the right leg for six months. He had no history of trauma or systemic disease. Lumbosacral magnetic resonance imaging (MRI) showed a well-defined mass at the L3-L4 level compressing the right nerve root. The patient was managed with L3-L4-L5 transpedicular fixation and right-side laminectomy L3-L4 for resection of the tumor. Histopathological examination confirmed the diagnosis of schwannoma. The patient had a favorable postoperative recovery and experienced a resolution of symptoms. Lumbar schwannomas are rare they can cause significant symptoms and require appropriate diagnosis and management. Microsurgery is the preferred treatment, and endoscopic microsurgery is the most promising technique
    corecore