1,075,364 research outputs found

    Algorithms for determining integer complexity

    Full text link
    We present three algorithms to compute the complexity n\Vert n\Vert of all natural numbers nN n\le N. The first of them is a brute force algorithm, computing all these complexities in time O(N2)O(N^2) and space O(Nlog2N)O(N\log^2 N). The main problem of this algorithm is the time needed for the computation. In 2008 there appeared three independent solutions to this problem: V. V. Srinivas and B. R. Shankar [11], M. N. Fuller [7], and J. Arias de Reyna and J. van de Lune [3]. All three are very similar. Only [11] gives an estimation of the performance of its algorithm, proving that the algorithm computes the complexities in time O(N1+β)O(N^{1+\beta}), where 1+β=log3/log21.5849631+\beta =\log3/\log2\approx1.584963. The other two algorithms, presented in [7] and [3], were very similar but both superior to the one in [11]. In Section 2 we present a version of these algorithms and in Section 4 it is shown that they run in time O(Nα)O(N^\alpha) and space O(NloglogN)O(N\log\log N). (Here α=1.230175\alpha = 1.230175). In Section 2 we present the algorithm of [7] and [3]. The main advantage of this algorithm with respect to that in [11] is the definition of kMax in Section 2.7. This explains the difference in performance from O(N1+β)O(N^{1+\beta}) to O(Nα)O(N^\alpha). In Section 3 we present a detailed description a space-improved algorithm of Fuller and in Section 5 we prove that it runs in time O(Nα)O(N^\alpha) and space O(N(1+β)/2loglogN)O(N^{(1+\beta)/2}\log\log N), where α=1.230175\alpha=1.230175 and (1+β)/20.792481(1+\beta)/2\approx0.792481.Comment: 21 pages. v2: We improved the computations to get a better bound for $\alpha

    Lie systems: theory, generalisations, and applications

    Full text link
    Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule. Apart from this fundamental property, Lie systems enjoy many other geometrical features and they appear in multiple branches of Mathematics and Physics, which strongly motivates their study. These facts, together with the authors' recent findings in the theory of Lie systems, led to the redaction of this essay, which aims to describe such new achievements within a self-contained guide to the whole theory of Lie systems, their generalisations, and applications.Comment: 161 pages, 2 figure

    Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas

    Get PDF
    The self-gravitating thermal gas (non-relativistic particles of mass m at temperature T) is exactly equivalent to a field theory with a single scalar field phi(x) and exponential self-interaction. We build up perturbation theory around a space dependent stationary point phi_0(r) in a finite size domain delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica- tions (interstellar medium,galaxy distributions).We compute the correlations of the gravitational potential (phi) and of the density and find that they scale; the latter scales as 1/r^2. A rich structure emerges in the two-point correl- tors from the phi fluctuations around phi_0(r). The n-point correlators are explicitly computed to the one-loop level.The relevant effective coupling turns out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE) for the n-point correlator are derived and the RG flow for the effective coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence on tau emerges here.lambda(tau) vanishes each time tau approaches discrete values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior [lambda(tau) decreasing with increasing tau] is here connected with low density self-similar fractal structures fitting one into another.For scales smaller than the points tau_n, ultraviolet unstable behaviour appears which we connect to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we get a hierarchy of scales and Jeans lengths following the geometric progression R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure

    Wilson-'t Hooft operators in four-dimensional gauge theories and S-duality

    Get PDF
    We study operators in four-dimensional gauge theories which are localized on a straight line, create electric and magnetic flux, and in the UV limit break the conformal invariance in the minimal possible way. We call them Wilson-'t Hooft operators, since in the purely electric case they reduce to the well-known Wilson loops, while in general they may carry 't Hooft magnetic flux. We show that to any such operator one can associate a maximally symmetric boundary condition for gauge fields on AdS^2\times S^2. We show that Wilson-'t Hooft operators are classifed by a pair of weights (electric and magnetic) for the gauge group and its magnetic dual, modulo the action of the Weyl group. If the magnetic weight does not belong to the coroot lattice of the gauge group, the corresponding operator is topologically nontrivial (carries nonvanishing 't Hooft magnetic flux). We explain how the spectrum of Wilson-'t Hooft operators transforms under the shift of the theta-angle by 2\pi. We show that, depending on the gauge group, either SL(2,Z) or one of its congruence subgroups acts in a natural way on the set of Wilson-'t Hooft operators. This can be regarded as evidence for the S-duality of N=4 super-Yang-Mills theory. We also compute the one-point function of the stress-energy tensor in the presence of a Wilson-'t Hooft operator at weak coupling.Comment: 32 pages, latex. v2: references added. v3: numerical factors corrected, other minor change

    Compilation of relations for the antisymmetric tensors defined by the Lie algebra cocycles of su(n)su(n)

    Full text link
    This paper attempts to provide a comprehensive compilation of results, many new here, involving the invariant totally antisymmetric tensors (Omega tensors) which define the Lie algebra cohomology cocycles of su(n)su(n), and that play an essential role in the optimal definition of Racah-Casimir operators of su(n)su(n). Since the Omega tensors occur naturally within the algebra of totally antisymmetrised products of λ\lambda-matrices of su(n)su(n), relations within this algebra are studied in detail, and then employed to provide a powerful means of deriving important Omega tensor/cocycle identities. The results include formulas for the squares of all the Omega tensors of su(n)su(n). Various key derivations are given to illustrate the methods employed.Comment: Latex file (run thrice). Misprints corrected, Refs. updated. Published in IJMPA 16, 1377-1405 (2001
    corecore