research

Compilation of relations for the antisymmetric tensors defined by the Lie algebra cocycles of su(n)su(n)

Abstract

This paper attempts to provide a comprehensive compilation of results, many new here, involving the invariant totally antisymmetric tensors (Omega tensors) which define the Lie algebra cohomology cocycles of su(n)su(n), and that play an essential role in the optimal definition of Racah-Casimir operators of su(n)su(n). Since the Omega tensors occur naturally within the algebra of totally antisymmetrised products of λ\lambda-matrices of su(n)su(n), relations within this algebra are studied in detail, and then employed to provide a powerful means of deriving important Omega tensor/cocycle identities. The results include formulas for the squares of all the Omega tensors of su(n)su(n). Various key derivations are given to illustrate the methods employed.Comment: Latex file (run thrice). Misprints corrected, Refs. updated. Published in IJMPA 16, 1377-1405 (2001

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020