399 research outputs found
A space-time multivariate Bayesian model to analyse road traffic accidents by severity
The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects and we carry out an extensive model comparison. The results show important associations in both spatially structured and unstructured effects between severities, and a downward temporal trend is observed for low and high levels of severity. Maps of posterior accident rates indicate elevated risk within big cities for accidents of low severity and in suburban areas in the north and on the southern coast of England for accidents of high severity. The posterior probability of extreme rates is used to suggest the presence of hot spots in a public health perspective.Areti Boulieri acknowledges support from the National Institute for Health Research and the Medical Research Council Doctoral Training Partnership. Marta Blangiardo acknowledges support from the National Institute for Health Research and the Medical Research Council–Public Health England Centre for Environment and Health. Silvia Liverani acknowledges support from the Leverhulme Trust (grant ECF-2011-576)
Flow-based reputation with uncertainty: Evidence-Based Subjective Logic
The concept of reputation is widely used as a measure of trustworthiness
based on ratings from members in a community. The adoption of reputation
systems, however, relies on their ability to capture the actual trustworthiness
of a target. Several reputation models for aggregating trust information have
been proposed in the literature. The choice of model has an impact on the
reliability of the aggregated trust information as well as on the procedure
used to compute reputations. Two prominent models are flow-based reputation
(e.g., EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based
models provide an automated method to aggregate trust information, but they are
not able to express the level of uncertainty in the information. In contrast,
Subjective Logic extends probabilistic models with an explicit notion of
uncertainty, but the calculation of reputation depends on the structure of the
trust network and often requires information to be discarded. These are severe
drawbacks.
In this work, we observe that the `opinion discounting' operation in
Subjective Logic has a number of basic problems. We resolve these problems by
providing a new discounting operator that describes the flow of evidence from
one party to another. The adoption of our discounting rule results in a
consistent Subjective Logic algebra that is entirely based on the handling of
evidence. We show that the new algebra enables the construction of an automated
reputation assessment procedure for arbitrary trust networks, where the
calculation no longer depends on the structure of the network, and does not
need to throw away any information. Thus, we obtain the best of both worlds:
flow-based reputation and consistent handling of uncertainties
Respiratory hospital admission risk near large composting facilities
AbstractBackgroundLarge-scale composting can release bioaerosols in elevated quantities, but there are few studies of health effects on nearby communities.MethodsA cross-sectional ecological small area design was used to examine risk of respiratory hospital admissions within 2500m of all 148 English large-scale composting facilities in 2008–10. Statistical analyses used a random intercept Poisson regression model at Census Output Area (COA) level (mean population 310). Models were adjusted for age, sex, deprivation and tobacco sales.ResultsAnalysing 34,963 respiratory hospital admissions in 4656 COAs within 250–2500m of a site, there were no significant trends using pre-defined distance bands of >250–750m, >750–1500m and >1500–2500m. Using a continuous measure of distance, there was a small non-statistically significant (p=0.054) association with total respiratory admissions corresponding to a 1.5% (95% CI: 0.0–2.9%) decrease in risk if moving from 251m to 501m. There were no significant associations for subgroups of respiratory infections, asthma or chronic obstructive pulmonary disease.ConclusionThis national study does not provide evidence for increased risks of respiratory hospital admissions in those living beyond 250m of an outdoor composting area perimeter. Further work using better measures of exposure and exploring associations with symptoms and disease prevalence, especially in vulnerable groups, is recommended to support regulatory approaches
Quantification of annual settlement growth in rural mining areas using machine learning
Studies on annual settlement growth have mainly focused on larger cities or incorporated data rarely available in, or applicable to, sparsely populated areas in sub-Saharan Africa, such as aerial photography or night-time light data. The aim of the present study is to quantify settlement growth in rural communities in Burkina Faso affected by industrial mining, which often experience substantial in-migration. A multi-annual training dataset was created using historic Google Earth imagery. Support vector machine classifiers were fitted on Landsat scenes to produce annual land use classification maps. Post-classification steps included visual quality assessments, majority voting of scenes of the same year and temporal consistency correction. Overall accuracy in the four studied scenes ranged between 58.5% and 95.1%. Arid conditions and limited availability of Google Earth imagery negatively affected classification accuracy. Humid study sites, where training data could be generated in proximity to the areas of interest, showed the highest classification accuracies. Overall, by relying solely on freely and globally available imagery, the proposed methodology is a promising approach for tracking fast-paced population dynamics in rural areas where population data is scarce. With the growing availability of longitudinal high-resolution imagery, including data from the Sentinel satellites, the potential applications of the methodology presented will further increase in the futur
Ambient air pollution exposure and chronic bronchitis in the Lifelines cohort
BACKGROUND: Few large studies have assessed the relationship of long-term ambient air pollution exposure with the prevalence and incidence of symptoms of chronic bronchitis and cough. METHODS: We leveraged Lifelines cohort data on 132 595 (baseline) and 65 009 (second assessment) participants linked to ambient air pollution estimates. Logistic regression models adjusted for sex, age, educational attainment, body mass index, smoking status, pack-years smoking and environmental tobacco smoke at home were used to assess associations of air pollution with prevalence and incidence of chronic bronchitis (winter cough and sputum almost daily for >/=3 months/year), chronic cough (winter cough almost daily for >/=3 months/year) and prevalence of cough and sputum symptoms, irrespective of duration. RESULTS: Associations were seen for all pollutants for prevalent cough or sputum symptoms. However, for prevalent and incident chronic bronchitis, statistically significant associations were seen for nitrogen dioxide (NO2) and black carbon (BC) but not for fine particulate matter (PM2.5). For prevalent chronic bronchitis, associations with NO2 showed OR: 1.05 (95% CI: 1.02 to 1.08) and with BC OR: 1.06 (95% CI: 1.03 to 1.09) expressed per IQR; corresponding results for incident chronic bronchitis were NO2 OR: 1.07 (95% CI: 1.02 to 1.13) and BC OR: 1.07 (95% CI: 1.02 to 1.13). In subgroup analyses, slightly stronger associations were observed among women, never smokers and younger individuals. CONCLUSION: This is the largest analysis to date to examine cross-sectional and longitudinal associations between ambient air pollution and chronic bronchitis. NO2 and BC air pollution was associated with increased odds of prevalent and incident chronic bronchitis
Land use regression modelling of NO2 in SĂŁo Paulo, Brazil
BACKGROUND: Air pollution is a major global public health problem. The situation is most severe in low- and middle-income countries, where pollution control measures and monitoring systems are largely lacking. Data to quantify the exposure to air pollution in low-income settings are scarce. METHODS: In this study, land use regression models (LUR) were developed to predict the outdoor nitrogen dioxide (NO2) concentration in the study area of the Western Region Birth Cohort in Sao Paulo. NO2 measurements were performed for one week in winter and summer at eighty locations. Additionally, weekly measurements at one regional background location were performed over a full one-year period to create an annual prediction. RESULTS: Three LUR models were developed (annual, summer, winter) by using a supervised stepwise linear regression method. The winter, summer and annual models explained 52 %, 75 % and 66 % of the variance (R(2)) respectively. Cross-holdout validation tests suggest robust models. NO2 levels ranged from 43.2 mug/m(3) to 93.4 mug/m(3) in the winter and between 28.1 mug/m(3) and 72.8 mug/m(3) in summer. Based on our annual prediction, about 67 % of the population living in the study area is exposed to NO2 values over the WHO suggested annual guideline of 40 mug/m(3) annual average. CONCLUSION: In this study we were able to develop robust models to predict NO2 residential exposure. We could show that average measures, and therefore the predictions of NO2, in such a complex urban area are substantially high and that a major variability within the area and especially within the season is present. These findings also suggest that in general a high proportion of the population is exposed to high NO2 levels
Land use regression modelling of community noise in SĂŁo Paulo, Brazil
Noise pollution has negative health consequences, which becomes increasingly relevant with rapid urbanization. In low- and middle-income countries research on health effects of noise is hampered by scarce exposure data and noise maps. In this study, we developed land use regression (LUR) models to assess spatial variability of community noise in the Western Region of Sao Paulo, Brazil.We measured outdoor noise levels continuously at 42 homes once or twice during one week in the summer and the winter season. These measurements were integrated with various geographic information system variables to develop LUR models for predicting average A-weighted (dB(A)) day-evening-night equivalent sound levels (Lden) and night sound levels (Lnight). A supervised mixed linear regression analysis was conducted to test potential noise predictors for various buffer sizes and distances between home and noise source.Noise exposure levels in the study area were high with a site average Lden of 69.3 dB(A) ranging from 60.3 to 82.3 dB(A), and a site average Lnight of 59.9 dB(A) ranging from 50.7 to 76.6 dB(A). LUR models had a good fit with a R(2) of 0.56 for Lden and 0.63 for Lnight in a leave-one-site-out cross validation. Main predictors of noise were the inverse distance to medium roads, count of educational facilities within a 400 m buffer, mean Normalized Difference Vegetation Index (NDVI) within a 100 m buffer, residential areas within a 50 m (Lden) or 25 m (Lnight) buffer and slum areas within a 400 m buffer. Our study suggests that LUR modelling with geographic predictor data is a promising and efficient approach for noise exposure assessment in low- and middle-income countries, where noise maps are not available
Spatial and temporal variations in PM10 concentrations between 2010-2017 in South Africa
Particulate matter less than or equal to 10 mum in aerodynamic diameter (PM10 microg/m(3)) is a priority air pollutant and one of the most widely monitored ambient air pollutants in South Africa. This study analyzed PM10 from monitoring 44 sites across four provinces of South Africa (Gauteng, Mpumalanga, Western Cape and KwaZulu-Natal) and aimed to present spatial and temporal variation in the PM10 concentration across the provinces. In addition, potential influencing factors of PM10 variations around the three site categories (Residential, Industrial and Traffic) were explored. The spatial trend in daily PM10 concentration variation shows PM10 concentration can be 5.7 times higher than the revised 2021 World Health Organization annual PM10 air quality guideline of 15 microg/m(3) in Gauteng province during the winter season. Temporally, the highest weekly PM10 concentrations of 51.4 microg/m(3), 46.8 microg/m(3), 29.1 microg/m(3) and 25.1 microg/m(3) at Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape Province were recorded during the weekdays. The study results suggest a decrease in the change of annual PM10 levels at sites in Gauteng and Mpumalanga Provinces. An increased change in annual PM10 levels was reported at most sites in Western Cape and KwaZulu-Natal
The air and viruses we breathe: assessing the effect the PM2.5 air pollutant has on the burden of COVID-19
Evidence suggests an association between air pollutant exposure and worse outcomes for respiratory viral diseases, like COVID-19. However, does breathing polluted air over many years affect the susceptibility to SARS-CoV-2 infection or severity of COVID-19 disease, and how intense are these effects? As climate change intensifies, air pollutant levels may rise, which might further affect the burden of respiratory viral diseases. We assessed the effect of increasing exposure to PM2.5 (particulate matter ≤ 2.5 microns in diameter) on SARS-CoV-2 susceptibility or COVID-19 severity and projected the impact on infections and hospitalisations over two years. Simulations in a hypothetical, representative population show that if exposure affects severity, then hospital admissions are projected to increase by 5-10% for a one-unit exposure increase. However, if exposure affects susceptibility, then infections would increase with the potential for onward transmission and hospital admissions could increase by over 60%. Implications of this study highlight the importance of considering this potential additional health and health system burden as part of strategic planning to mitigate and respond to changing air pollution levels. It is also important to better understand at which point PM2.5 exposure affects SARS-CoV-2 infection through to COVID-19 disease progression, to enable improved protection and better support of those most vulnerabl
- …