16 research outputs found

    Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines

    No full text
    The use of DNA and viral vector-based vaccines for the induction of cellular immune responses is increasingly gaining interest. However, concerns have been raised regarding the safety of these immunization strategies. Due to the lack of their genome integration, mRNA-based vaccines have emerged as a promising alternative. In this study, we evaluated the potency of antigen-encoding mRNA complexed with the cationic lipid 1,2-dioleoyl-3trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/DOPE ) as a novel vaccination approach. We demonstrate that subcutaneous immunization of mice with mRNA encoding the HIV-1 antigen Gag complexed with DOTAP/DOPE elicits antigen-specific, functional T cell responses resulting in specific killing of Gag peptide-pulsed cells and the induction of humoral responses. In addition, we show that DOTAP/DOPE complexed antigen-encoding mRNA displays immune-activating properties characterized by secretion of type I interferon (IFN) and the recruitment of proinflammatory monocytes to the draining lymph nodes. Finally, we demonstrate that type I IFN inhibit the expression of DOTAP/DOPE complexed antigen-encoding mRNA and the subsequent induction of antigen-specific immune responses. These results are of high relevance as they will stimulate the design and development of improved mRNA-based vaccination approaches.status: publishe

    Lipoplexes carrying mRNA encoding Gag protein modulate dendritic cells to stimulate HIV-specific immune responses

    No full text
    Aim: Cationic lipids (Lipofectamine (TM) [Invitrogen, Merelbeke, Belgium] and 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and polymers (jetPEI (TM) and in vivo-jetPEI (TM) [Polyplus-transfection, Illkirch, France]) were evaluated for their potential to deliver mRNA to monocyte-derived dendritic cells. Materials & methods: Lipoplexes and polyplexes, containing mRNA encoding GFP or Gag protein, were incubated with human monocyte-derived dendritic cells and transfection efficiencies were assessed by flow cytometry. Results: Lipofectamine was by far the most efficient in mRNA delivery, therefore it was used in further experiments. Incubation of monocyte-derived dendritic cells isolated from HIV-1-positive donors with mRNA encoding Gag protein complexed to Lipofectamine resulted in 50% transfection. Importantly, coculture of these Gag-transfected dendritic cells with autologous T cells induced an over tenfold expansion of IFN-gamma- and IL-2-secreting CD4(+) and CD8(+) T cells. Conclusion: Cationic lipid-mediated mRNA delivery may be a useful tool for therapeutic vaccination against HIV-1. This approach can be applied to develop vaccination strategies for other infectious diseases and cancer

    Polyelectrolyte Capsules-containing HIV-1 p24 and Poly I:C Modulate Dendritic Cells to Stimulate HIV-1-specific Immune Responses

    No full text
    Polyelectrolyte microcapsules (MCs) are potent protein delivery vehicles which can be tailored with ligands to stimulate maturation of dendritic cells (DCs). We investigated the immune stimulatory capacity of monocyte-derived DC (Mo-DC) loaded with these MCs, containing p24 antigen from human immunodeficiency virus type 1 (HIV-1) alone [p24-containing MC (MCp24)] or with the Toll-like receptor ligand 3 (TLR3) ligand poly I:C (MCp24pIC) as a maturation factor. MO-DC, loaded with MCp24pIC, upregulated CCR7, CD80, CD83, and CD86 and produced high amounts of interleukin-12 (IL-12) cytokine, to a similar extent as MCp24 in the presence of an optimized cytokine cocktail. MO-DC from HIV-infected patients under highly active antiretroviral therapy (HAART) exposed to MCp24 together with cytokine cocktail or to MCp24pIC expanded autologous p24-specific CD4+ and CD8+ T-cell responses as measured by interferon-Îł (IFN-Îł) and IL-2 cytokine production and secretion. In vivo relevance was shown by immunizing C57BL/6 mice with MCp24pIC, which induced both humoral and cellular p24-specific immune responses. Together these data provide a proof of principle that both antigen and DC maturation signal can be delivered as a complex with polyelectrolyte capsules to stimulate virus-specific T cells both in vitro and in vivo. Polyelectrolyte MCs could be useful for in vivo immunization in HIV-1 and other infections
    corecore