82 research outputs found

    The SWADE model for landslide dating in time series of optical satellite imagery

    Get PDF
    Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating technique based on Segmented WAvelet-DEnoising and stepwise linear fitting (SWADE), using the Landsat archive (1985–2017). SWADE employs the principle that vegetation is often removed by landsliding in vegetated areas, causing a temporal decrease in normalized difference vegetation index (NDVI). The applicability of SWADE and two previously published methods for landslide dating, harmonic modelling and LandTrendr, are evaluated using 66 known landslides in the Buckinghorse River area, northeastern British Columbia, Canada. SWADE identifies sudden changes of NDVI values in the time series and this may result in one or more probable landslide occurrence dates. The most-probable date range identified by SWADE detects 52% of the landslides within a maximum error of 1 year, and 62% of the landslides within a maximum error of 2 years. Comparatively, these numbers increase to 68% and 80% when including the two most-probable landslide date ranges, respectively. Harmonic modelling detects 79% of the landslides with a maximum error of 1 year, and 82% of the landslides with a maximum error of 2 years, but requires expert judgement and a well-developed seasonal vegetation cycle in contrast to SWADE. LandTrendr, originally developed for mapping deforestation, only detects 42% of landslides within a maximum error of 2 years. SWADE provides a promising fully automatic method for landslide dating, which can contribute to constructing landslide frequency-magnitude distributions in remote areas

    Factors controlling bed and bank erosion in the Illgraben (CH)

    Get PDF
    Debris flows can grow greatly in size and hazardous potential by eroding bed and bank materials. However, erosion mechanisms are poorly understood because debris flows are complex hybrids between a fluid flow and a moving mass of colliding particles, bed erodibility varies between events, and field measurements are hard to obtain. Here, we (i) quantify the spatio-temporal patterns of erosion and deposition and (ii) identify the key controls on debris-flow erosion in the Illgraben (CH). We use a dataset that combines information on flow properties, antecedent rainfall, and bed and bank erosion for 13 debris flows that occurred between 2019 and 2021. We show that spatio-temporal patterns of erosion and deposition in natural debris-flow torrents can be highly variable and dynamic, and we identify a memory effect where erosion is strong at locations of strong deposition during previous flows and vice versa. We find that flow conditions and antecedent rainfall (affecting bed wetness) jointly control debris-flow erosion. We find statistically significant correlations between channel erosion/deposition and a wide range of flow conditions, including frontal flow depth, velocity, and discharge, and flow volume, cumulative shear stress and seismic energy, as well as antecedent rainfall. Overall, flow conditions describing the cumulative forces exerted at the bed during an event, such as cumulative shear stress and flow volume, best explain erosion. A shear-stress approach accounting for bed erodibility may therefore be applicable for modelling and predicting debris-flow erosion. This work can provide input for model development by identifying correlations of flow and bed conditions with erosion that models should oblige

    Characteristics of the impact pressure of debris flows

    Get PDF
    Debris flows are common geological hazards in mountainous regions worldwide. Predicting the impact pressure of debris flows is of major importance for hazard mitigation. Here, we experimentally investigate the impact characteristics of debris flows by varying the concentrations of debris grains and slurry. The measured impact pressure signal is decomposed into a stationary mean pressure (SMP) and a fluctuating pressure (FP) through empirical mode decomposition. The SMP of low frequency is caused by the thrusting of bulk flow while the FP of high frequency is induced by the collision of coarse debris grains, revealed by comparing the features of impact pressure spectra of pure slurries and debris flows. The peak SMP and the peak FP first increase and then decrease with the slurry density. The basal frictional resistance is reduced by the nonequilibrium pore-fluid pressure for debris flows with low-density slurry, which can increase the flow velocity and impact pressures. In contrast, the viscous flow of high-density slurry tends to reduce the flow velocity. The peak SMPs are well predicted by the Bernoulli equation and are related to the hydrostatic pressure and Froude number of the incident flow. The peak FPs depend on the kinetic energy and degree of segregation of coarse grains. The maximum degree of segregation occurs at an intermediate value of slurry density due to the transition of flow regime and fluid drag stresses. Our results facilitate predicting the impact pressures of debris flows based on their physical properties

    How Bed Composition Affects Erosion by Debris Flows - An Experimental Assessment

    Get PDF
    A solid physical understanding of debris-flow erosion is needed for both hazard prediction and understanding landscape evolution. However, the processes and forces involved in erosion by debris flows and especially how the erodible surface itself influences erosion are poorly understood. Here, we experimentally investigate the effects of bed composition on debris-flow erosion, by systematically varying the composition of an erodible bed in a small-scale debris-flow flume. The experiments show that water and clay content of an unconsolidated bed significantly control erosion magnitude by affecting the transfer of pore pressure, loading conditions, and contraction-dilation behavior of the bed. As the water content increases and the bed comes close to saturation, erosion increases rapidly, whereas for clay content an optimum for erosion exists around a clay content of 3%–4%. Our results show that small variations in bed composition can have large effects on debris-flow erosion, and thus volume growth and hazard potential

    Effects of debris-flow and bed composition on erosion and entrainment

    Get PDF
    Erosion and entrainment of material by debris flows determine debris-flow volume growth and therefore hazard potential. Recent advances in field, laboratory, and modelling studies have distilled two driving forces behind debris-flow erosion; impact and shear forces. A third factor influencing the (relative) importance of these forces is the viscosity and abundance of the interstitial fluid in the debris flow and the bed. However, how erosion and these forces depend on the composition of the debris flow itself and the composition of the bed remains unclear. Here, we present results of small-scale flume experiments with a loosely packed erodible bed that highlight the far-reaching effects of debris-flow and bed composition on erosion processes and magnitude. We quantify the effects of gravel, clay, and solid fraction in the debris flow on bed erosion. In addition, we quantify the effects of water and clay content of the unconsolidated bed on erosion by a debris flow. We show that debris flow erosion increases linearly when the gravel fraction of a debris flow is increased, which is linked to an increase in both impact and shear forces. We find that debris flow erosion, and the related forces, are non-linearly impacted by the clay and water content of the debris flow and those of the bed. For both the clay content of the debris flow and the bed, an optimum in erosion exists around a specific clay percentage that does not directly relate to an optimum in either shear or impact forces. When the water content of the bed and/or the debris flow is increased, erosion becomes largest when supersaturated conditions occur. These conditions are unrelated to the magnitude of the two erodible forces. This shows that both clay and water content affect erosion by affecting the transfer of pore pressures from the debris flow to the bed. We can therefore conclude that impact and shear forces dictate debris flow erosion in most cases but that their (relative) importance is significantly altered by the means and effectivity of pore pressure transfer from the debris flow to the bed. The latter is highly influenced by the viscosity and abundance of the interstitial fluid of the debris flow and the composition of the bed

    Analysis of superelevation and debris flow velocities at Illgraben, Switzerland

    Get PDF
    The forced vortex equation, based on the cross-stream inclination of a flow surface as it passes through a bend, is a common approach to estimating debris flow velocities. Here, we present the preliminary results of a study of superelevation and the correction factor k, used to adapt the forced vortex equation to debris flows, based on data from the Illgraben torrent in Switzerland. The definition of the radius of curvature, a factor in the calculation of superelevation velocities, is not found to exercise a large influence on the calculated velocities when using high resolution aerial images, with the choice of cross-section location and k-factor exercising a more significant influence. The k-factors found here fall within the range previously reported in the literature, ranging from approximately 1 to 7, and a previously suggested non-linear relationship with Froude numbers is evident in the dataset. Following the debris flow season of 2022, the study will be continued with additional debris flow events and the investigative methods will be extended to include high-resolution LiDAR sensors installed along the Illgraben torrent

    Factors controlling bed and bank erosion in the Illgraben (CH)

    Get PDF
    Debris flows can grow greatly in size and hazardous potential by eroding bed and bank materials. However, erosion mechanisms are poorly understood because debris flows are complex hybrids between a fluid flow and a moving mass of colliding particles, bed erodibility varies between events, and field measurements are hard to obtain. Here, we (i) quantify the spatio-temporal patterns of erosion and deposition and (ii) identify the key controls on debris-flow erosion in the Illgraben (CH). We use a dataset that combines information on flow properties, antecedent rainfall, and bed and bank erosion for 13 debris flows that occurred between 2019 and 2021. We show that spatio-temporal patterns of erosion and deposition in natural debris-flow torrents can be highly variable and dynamic, and we identify a memory effect where erosion is strong at locations of strong deposition during previous flows and vice versa. We find that flow conditions and antecedent rainfall (affecting bed wetness) jointly control debris-flow erosion. We find statistically significant correlations between channel erosion/deposition and a wide range of flow conditions, including frontal flow depth, velocity, and discharge, and flow volume, cumulative shear stress and seismic energy, as well as antecedent rainfall. Overall, flow conditions describing the cumulative forces exerted at the bed during an event, such as cumulative shear stress and flow volume, best explain erosion. A shear-stress approach accounting for bed erodibility may therefore be applicable for modelling and predicting debris-flow erosion. This work can provide input for model development by identifying correlations of flow and bed conditions with erosion that models should oblige
    • …
    corecore