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Abstract Landslides are destructive natural hazards that cause sub-
stantial loss of life and impact on natural and built environments. 
Landslide frequencies are important inputs for hazard assessments. 
However, dating landslides in remote areas is often challenging. We 
propose a novel landslide dating technique based on Segmented 
WAvelet-DEnoising and stepwise linear fitting (SWADE), using the 
Landsat archive (1985–2017). SWADE employs the principle that 
vegetation is often removed by landsliding in vegetated areas, caus-
ing a temporal decrease in normalized difference vegetation index 
(NDVI). The applicability of SWADE and two previously published 
methods for landslide dating, harmonic modelling and LandTrendr, 
are evaluated using 66 known landslides in the Buckinghorse River 
area, northeastern British Columbia, Canada. SWADE identifies 
sudden changes of NDVI values in the time series and this may 
result in one or more probable landslide occurrence dates. The 
most-probable date range identified by SWADE detects 52% of the 
landslides within a maximum error of 1 year, and 62% of the land-
slides within a maximum error of 2 years. Comparatively, these 
numbers increase to 68% and 80% when including the two most-
probable landslide date ranges, respectively. Harmonic modelling 
detects 79% of the landslides with a maximum error of 1 year, and 
82% of the landslides with a maximum error of 2 years, but requires 
expert judgement and a well-developed seasonal vegetation cycle 
in contrast to SWADE. LandTrendr, originally developed for map-
ping deforestation, only detects 42% of landslides within a maxi-
mum error of 2 years. SWADE provides a promising fully automatic 
method for landslide dating, which can contribute to constructing 
landslide frequency-magnitude distributions in remote areas.

Keywords Landslide · Dating · Landsat · NDVI time series · 
Stepwise linear fitting · Harmonic modelling · LandTrendr · 
Buckinghorse river

Introduction
Landslides are mass movements of rock and soil down a slope, 
which can be destructive to people and infrastructure causing 
direct and indirect damage to natural ecosystems (Cruden and 
Varnes 1996; Geertsema et al. 2006; Fell et al. 2008a; Geertsema 
and Foord 2014; Chen et al. 2020b; Liang et al. 2022). An investiga-
tion from the past two decades (1998–2017) has shown that up to 
4.8 million people have been affected by landslides, and over 18 
thousand people have lost their lives (CRED 2018). Constructing 
early warning systems (Wadhawan 2019; Yang et al. 2019), land-
slide susceptibility (Catani et al. 2013; Di Traglia et al. 2018; Fang 
et al. 2021), landslide hazard (Guzzetti et al. 2005) and landslide 
risk zonation (Guo et al. 2020; Xiao et al. 2020a; Li et al. 2021) are 

effective approaches to managing landslide-prone areas. Impor-
tant aspects of such landslide hazard assessments are landslide 
magnitude-frequency distributions (Catani et al. 2005; Fell et al. 
2008a; Guzzetti et al. 2012; Wang et al. 2017; Zhou et al. 2020; Jia 
et al. 2021). Through remote sensing or post processing methods, 
landslide geometrical characteristics can often be addressed, such 
as landslide area (Larsen et al. 2010), landslide velocity (Horton 
et al. 2013) and landslide displacement (Chen et al. 2020a). However, 
determining the date of landslide occurrence is often challenging 
in remote areas.

Remote sensing techniques are available to observe land sur-
face deformations, and are applied to monitor landslides widely 
(Henderson and Lewis 1998; Nichol and Wong 2005; Casagli et al. 
2016; Ghorbanzadeh et al. 2019, 2022; Ye et al. 2019; Zhong et al. 
2020). To date a landslide in the past few decades (e.g. from 1980s 
onwards), it is crucial to study dense and long historical remote 
sensing time series. Therefore, the Landsat satellite image archive 
(NASA, https:// lands at. gsfc. nasa. gov/) is preferred because of the 
long period of operation from 1972 to the present day, the moderate 
spatial resolution of 30 m in the visible light and infrared bands, 
and the satellite revisit time of 16 days per satellite (Chander et al. 
2009; Gorelick et al. 2017). Yet, there are limited studies exploring 
the suitability of the optical remote sensing satellite image archive 
for landslide dating. The methods for landslide dating using Landsat 
satellite imagery can be roughly divided in two main categories: 
visual image interpretation (e.g. Geertsema and Foord 2014; Coe 
et al. 2018) and (semi-)automatic methods (e.g. Deijns et al. 2020). 
A downside of visual image interpretations is that it is time- and 
labour-consuming (Geertsema et al. 2006; Geertsema and Foord 
2014). Therefore, where data resources and monitoring equipment 
are limited, (semi-)automatic methods are preferred. Several semi-
automatic landslide dating methods based on remote sensing have 
been developed (Kennedy et al. 2007; Deijns et al. 2020). These 
methods are mostly applied to vegetated areas, aiming at identifying 
the partial or complete removal of vegetation by landslide activity, 
and following the subsequent regrowth. For example, Deijns et al. 
(2020) suggested a semi-automatic landslide dating approach using 
harmonic modelling in Buckinghorse River area, Canada, based on 
the vegetation phenology characteristics as well as the relationship 
between landslide changes and the normalized difference vegeta-
tion index (NDVI). Unfortunately, their method requires expert 
judgement and strongly depends on a well-developed seasonal 
vegetation cycle, to obtain reliable results. Another semi-automatic 
method that detects temporal changes in vegetation is LandTrendr 
(Landsat-based detection of Trends in Disturbance and Recovery) 
(Kennedy et al. 2007, 2018). LandTrendr was originally developed for 
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monitoring terrestrial forest disturbance and is suitable for detect-
ing annual changes in vegetation cover induced by sudden events 
such as logging and wildfires (Kennedy et al. 2018; Hislop et al. 2020; 
Senf and Seidl 2021). LandTrendr provides a spectral-temporal seg-
mentation algorithm, useful for annual NDVI change detection in 
a time series of moderate resolution satellite imagery on a pixel-
by-pixel basis (Kennedy et al. 2007, 2018). While the potential for 
monitoring temporal changes in vegetation cover has been shown by 
various studies (Kennedy et al. 2018; Chen et al. 2019; DeVries et al. 
2020; Tian et al. 2020; Jia et al. 2021), these still have to be evaluated 
further for landslide dating applications.

Here, we present a novel algorithm developed in Google Earth 
Engine (GEE; Gorelick et al. 2017; Wu 2020) for automatic landslide 
dating based on time series of remote sensing images referred to  
as SWADE (Segmented WAvelet-DEnoising and stepwise linear fit-
ting). GEE provides a cloud-based computation platform that ena-
bles time-effective exploration and analyses of a large archive of 
Landsat remote sensing images since 1985. We evaluate and quantify 
the accuracy of the novel SWADE model against 66 landslides that 
occurred over the past decades (1985–2017) in the Buckinghorse 
River area, northeastern British Columbia, Canada. The selected 
Buckinghorse River area is a densely covered pine forest with clear 
seasonal phenological changes and with frequently occurring land-
slides. These site characteristics make it suitable to evaluate and 
compare the accuracy of SWADE to two previously published semi-
automatic methods, harmonic modelling (Deijns et al. 2020) and 
LandTrendr (Kennedy et al. 2018).

Buckinghorse River landslide database
Figure 1 shows our study site, the Buckinghorse River area, north-
eastern British Columbia, Canada (57°33′–57°22′N, 122°19′–122°45′W). 
This area has an elevation range from 682 to 1100 m a.s.l, as well as 
a high landslide activity over the past decades. In the study area, 
boreal forests are economically important and are dominated by 
black and white spruce, and lodgepole pine (Deijns et al. 2020). The 
study area is in the “isolated patches” permafrost zone; and perma-
frost degradation stimulates landslide activity (Heginbottom et al. 
1995; Geertsema and Foord 2014). There are no direct meteorological 
data available in the area but the mean annual precipitation in the 
Peace District (~ 200 km south of the case study with a time series 
available from 1910 to 2008) and Fort Nelson District (~ 200 km 
north of the case study with a time series available from 1937 to 
2008) are 497 mm and 486 mm, respectively (Foord 2016). From 
1910 to 2008, an increase in mean annual temperature of + 0.5 °C has 
been reported in the Peace District and an increase of + 1.1 °C has 
been reported in the Fort Nelson District. Mean winter temperatures 
have increased by approximately 2.0 °C and 2.5 °C in these areas, 
respectively (Foord 2016). These rising temperatures cause perma-
frost melting, loss of soil stability, increase loose material availability 
and trigger landslide activity (Geertsema et al. 2006).

The main lithological units are sequences of shale and sandstone 
of lower Cretaceous and upper Cretaceous age, as well as exposed 
units of rocks of the Carboniferous Prophet Formation to Creta-
ceous Buckinghorse Formation (Lane et al. 1999; Geertsema et al. 
2006). The shale sequences are especially prone to landslide activ-
ity. The major folds have kilometre wavelengths and a predominant 
north-northwest trend (Lane et al. 1999).

A total of 66 landslides have occurred between 1985 and 2017, 
as identified from Landsat (5, 7 and 8), and visually confirmed on 
Sentinel-2 and lidar imagery in the Buckinghorse River area by 
Deijns et al. (2020). A total of 21 landslides occurred in the period 
1985–1995; 19 landslides occurred in the period 1996–2005; and 26 
landslides occurred in the period 2006–2017. The mean landslide 
area is 6.95 ×  104  m2; minimum landslide area is 5.1 ×  103  m2 and 
maximum landslide area is 2.54 ×  105  m2. The run out distances of 
the landslides extended up to 1765 m.

Methodology
Landslide dating is defined as the most probable landslide occur-
rence date range based on a time series of satellite image observa-
tions (Fell et al. 2008b; Crozier 2010; Korup et al. 2019; Deijns et al. 
2020; Dewitte et al. 2021). The key concept of landslide temporal 
detection is that, when a landslide occurs, the vegetation cover, most 
often trees, is removed, damaged or tumbled over (Geertsema and 
Pojar 2007; Geertsema et al. 2009), causing a sudden drop in the 
values of NDVI (Dou et al. 2015; Dewitte et al. 2021). At the same 
time, this also implies that other factors that cause a decrease in 
forest cover, and thus NDVI, introduce errors and uncertainties, for 
example wildfires, accelerated erosion, constructions and logging. 
The NDVI is utilized to monitor the vegetation change, which is the 
normalized difference between near-infrared (NIR) and red (RED) 
reflectance. NDVI is widely used in remote sensing studies of veg-
etation to study and evaluate temporal developments of vegetation 
and crops (Tucker 1979). In temperate and boreal climates, NDVI 
increases in the harmonic, sinusoidal cycle of the forest from low 
NDVI (winter) to high NDVI (summer). To detect the landslide on 
the basis of vegetation damage or removal, two periods in the NDVI 
time series of satellite images are important to be separated and 
identified: (1) the pre-landslide period when there is full vegeta-
tion cover, and (2) the post-landslide period when the vegetation is 
removed or damaged and there is bare land or dry-brown vegeta-
tion (Meroni et al. 2019). After the landslide activity, the vegetation 
will regenerate at recovery rates depending on the degree of dam-
age done by the landslide and by vegetation growing conditions 
(Bartels et al. 2016; Hermosilla et al. 2016). The availability of a long 
time series of satellite observations, typically more than 30 years 
like the Landsat archive, and preferably dense observations in the 
time series is a prerequisite for the reliable recording the entire 
landslide evolution.

We evaluate the performance of the new SWADE, harmonic mod-
elling (Deijns et al. 2020) and LandTrendr methods (Kennedy et al. 
2018) (Table 1). Due to phenological changes or other noises (e.g. 
wildfire, cloud coverage and haze), it is often inevitable to detect 
multiple change points while landslide dating, after which the most 
likely date is manually determined in the harmonic modelling 
approach of Deijns et al. (2020). The harmonic modelling approach 
presents two results to differentiate the influence from locally phe-
nological changes, taking the undisturbed forest growth situation 
as a reference: non-detrended harmonic and detrended harmonic.

In contrast, we avoid manual interpretation in the SWADE 
method. Here, we present the success rate of the most likely 
(SWADE-a) or two most likely change points (SWADE-a and 
SWADE-b). We refer to those two approaches as SWADE1 (the most 
probable date range only) and SWADE2 (the two most probable 
date ranges).
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Fig. 1  a Location of the 
Buckinghorse River area in 
British Columbia, Canada, and 
the identified landslides with a 
rough indication of their date 
of occurrence. b–d Photo of 
landslide LS60 and Landsat 
images before and after land-
sliding. e–g Photo of landslide 
LS53 and Landsat images 
before and after landsliding. 
The yellow arrow indicates 
the movement direction of 
the landslides. Forest area is 
chosen as undisturbed forest 
locations close but outside the 
landslide area

Table 1  Overview of three 
landslide dating approaches, 
resulting in five results

a SWADE1 detects only the most probable landslide date range, indicated by SWADE-a.
b SWADE2 detects the two most probable dates, SWADE-a and SWADE-b, respectively.

Method name SWADE Harmonic modelling LandTrendr

Results name SWADE1a SWADE2b Detrended 
harmonic

Non-detrended 
harmonic

LandTrendr

References This work Deijns et al. (2020) Kennedy 
et al. 
(2018)
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We present the results from the five landslide dating methods, 
presented in Table 1, and we describe the methodology of SWADE, 
harmonic modelling and LandTrendr shown in Fig. 2.

SWADE: Segmented WAvelet‑DEnoising and stepwise linear 
fitting

Our SWADE landslide dating approach is based on wavelet denois-
ing of the NDVI time series and stepwise linear fitting of this signal. 
SWADE comprises three main steps, preprocessing, NDVI denois-
ing, and segmentation of the NDVI time series.

Preprocessing
We used GEE to obtain the Landsat derived NDVI time series. The 
NDVI time series should meet four criteria (Deijns et al. 2020). 
(1) Covering an extensive timeframe (i.e. in our case images are 
available from 1985 onwards). (2) Cloud masking. We applied the 
“modified normalized difference cloud index” (Marshak et al. 2000) 
to mask out the effects of cloud, shadows and haze and applied a 
buffer of 200 m around the clouds (Deijns et al. 2020). (3) Minimi-
zation of seasonal changes. We subtracted the NDVI time series at 
an undisturbed forest location close but outside the landslide area 
(control NDVI) from the NDVI time series at the landslide location 
(experimental NDVI) to remove the seasonal cycle on the landslide 
NDVI time series. The experimental NDVI time series (landslide 
NDVI) is next calculated over one single landslide. The control 
NDVI time series (forest NDVI) is calculated over undisturbed 
forested area, with the same procedures of experimental NDVI. In 
order to minimize and exclude minor differences from a single for-
ested area, we attain the average NDVI time series of twelve forest 
areas (Fig. 1a). Then, the cumulative difference (CDNDVI) between 
forest NDVI and landslide NDVI is calculated by Eq. (1).

ΔNDVI is the difference between  NDVIF and  NDVIL, t is the 
timestep and the T is the time range. (4) Filling data gaps. Data gaps 
(Hermosilla et al. 2016) usually occur in the NDVI time series due 
to cloud masking or scarce images. We utilized a “moving mean” 
algorithm (Deijns et al. 2020) to fill in the data gaps with a sliding 
window of seven images.

Denoising method
The wavelet transformation method is a common denoising method 
which can separate different frequencies in a signal, with a result of 
noise or detail (high frequency) and approximation (low frequency) 
(Lee et al. 2019). The wavelet transformation process includes two 
steps: wavelet decomposition and wavelet reconstruction (Lee et al. 
2019). The wavelet transformation is implemented through Python 
(3.8 version, https:// www. anaco nda. com/ produ cts/ indiv idual), and 
the denoised NDVI information CDNDVI_w is calculated from the 
original CDNDVI.

Segmentation of the time series
The segmenting principle is fundamental to separate the whole 
NDVI time series into different vegetation growth stages. 
SWADE assumes that the CDNDVI_w obeys linear change 
through the time series in both the pre-landslide period and 
the post-landslide period. (1) Before the time of landslide occur-
rence, the vegetation growth in the landslide zone and in the for-
est zone has limited difference through the whole year, because 
of their similar geological background and climate conditions. 
The ΔNDVI (in Eq. (1)) can be regarded as a constant value. (2) 
After landslide occurrence, the landslide vegetation is scarce; at 
the same time, the forest vegetation is comparatively abundant. 

(1)CDNDVI =
∑t=T

t=1
(ΔNDVI)t =

∑t=T

t=1

(

NDVIF − NDVIL
)

t

Fig. 2  Flowchart of the methodology of the three methods 
employed in this work. a SWADE (this work). SWADE1 obtains the 
most probable date range of landslide occurrence, while SWADE2 
obtains the two most probable date ranges of landslide occurrence. 

b Harmonic modelling (Deijns et al. 2020). The detrended harmonic 
modelling calculates the forest NDVI in the dashed line box, while 
the non-detrended harmonic modelling does not consider the forest 
NDVI. c LandTrendr (Kennedy et al. 2018)
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Hence, the ΔNDVI (in Eq. (1)) will increase, especially during the 
landslide recovery stage. In short, the CDNDVI_w obeys linear 
change prior to the landslide, followed by a comparative increase 
in the post-landslide period, especially in the vegetation regen-
eration period.

Based on this segmenting assumption, SWADE is used to sepa-
rate the “CDNDVI_w” curve into several short linear pieces to 
obtain break points, which indicate the probable date range(s) of 
landslide occurrence. The slope value of CDNDVI_w is an impor-
tant indicator for the pre-landslide period and post-landslide 
period, and thereby the date of landslide occurrence. Figure 3 
shows the three main development types of CDNDVI_w curves 
having distinct change patterns.

1. Situation I. Prior to the landslide, the vegetation in the forest 
zone and the vegetation in the landslide zone have an equal 
growth rate, so the CDNDVI_w is a constant value. After the 
landslide, the vegetation cover and growth rate in the land-
slide area sharply decrease, leading to a sharp increase in 
CDNDVI_w.

2. Situation II. Before the landslide, the growth rate of the vegeta-
tion in the forest exceeds the growth rate in the pre-landslide 
area, so the CDNDVI_w increases linearly. Once the landslide 
happens, the vegetation cover and growth rate in the land-
slide area sharply decrease, and the slope of the CDNDVI_w 
increases. The slope of the CDNDVI_w is larger in the post-
landslide section of the curve than in the pre-landslide section 
of the curve.

3. Situation III. Before the landslide, the vegetation in the forest 
grows slower than the vegetation in the pre-landslide area, so 
the CDNDVI_w decreases linearly. However, after the land-
slide the vegetation cover and growth rate in the landslide area 
sharply decrease, and CDNDVI_w sharply increases. In this 
situation the slope value of CDNDVI_w changes from negative 
to positive.

In the NDVI time series analysis, SWADE can segment time 
series into different periods of vegetation growth as well as detect-
ing the break points indicating potential landslide occurrence. In 

order to segment the time series, three approaches are summarized 
by Keogh et al. (2001): top-down, bottom-up and sliding window 
algorithm. In the top-down algorithm, the curve is partitioned 
into a number of pieces iteratively until a stop criterion is met. In 
the bottom-up algorithm, from the finest pieces, the segments will 
merge iteratively into larger pieces until a stop criterion is met. In 
the sliding window algorithm, the segment grows in size from the 
left to the right, until a stop criterion is met. In order to extract only 
one or two points from the whole NDVI time series, the top-down 
algorithm is preferred in our study due to its high efficiency.

Figure 2a summarizes the segmenting procedures for SWADE. 
In our study, we combine a decision tree method (Rivest 1987) with 
the stepwise linear fitting method to detect the probable date range 
of landslide occurrence through Python. The decision tree method 
is subdividing the entire time series into different segments based 
on the CDNDVI curve slope. We define a minimum number of three 
segments, but typically more segments are identified. Then, we use 
stepwise linear fitting to fit each of those segments through lin-
ear regression. Hence, the CDNDVI_w series is segmented into a 
number of potential pre- and post-CDNDVI_w segments. The most 
probable time of landslide occurrence (SWADE-a) is then defined 
as the largest slope, and the second most probable time of landslide 
occurrence (SWADE-b) as the second largest slope.

Harmonic modelling

The harmonic modelling method for landslide dating published by 
Deijns et al. (2020) is a semi-automatic technique which integrates 
the actual NDVI value and the NDVI harmonic fit value to detect 
when the landslide occurred. The harmonic modelling method con-
sists of three main steps: (1) data collection, (2) harmonic fitting 
and (3) semi-automatic detecting.

In the data collection of non-detrended harmonic modelling 
 NDVIL (landslide NDVI, in Fig. 2b) is collected in the same way as 
for SWADE (Fig. 2a). The  CDNDVIL is calculated as the cumula-
tive difference between  NDVIL and its harmonic fitted  NDVILfit. In 
the non-detrended harmonic modelling, the  CDNDVIL is used to 
determine landslide dating (Eq. (2)).

The detrended harmonic modelling approach implements the 
CDNDVI of randomly located forest patches within the study area 
 (CDNDVIF) (Fig. 2b). The  CDNDVIF is calculated as the cumulative 
difference between  NDVIF and its harmonic fitted  NDVIFfit (Eq. (3)). 
The CDNDVI in Eq. (4) is then used to date the landslide.

At last, for the semi-automatic landslide dating, a peak finding 
algorithm is applied to detect the change points, which repre-
sent probable date ranges of landslide occurrence. When multiple 
peaks are detected, the most likely landslide date is manually 
picked based on expert judgement.

(2)CDNDVIL =
∑t=T

t=1
(NDVILfit − NDVIL)t

(3)CDNDVIF =
∑t=T

t=1
(NDVIFfit − NDVIF )t

(4)CDNDVI =
∑t=T

t=1
(CDNDVIL − CDNDVIF )t

Fig. 3  The three main types of CDNDVI_w evolution indicating three 
different change patterns. Situation I: the vegetation growth in the 
landslide area is similar to that in the forest locations before the land-
slide. Situation II: the vegetation growth in landslide area is faster 
compared to that in the forest locations before the landslide. Situ-
ation III: the vegetation growth in landslide area is slower than the 
growth in the forest location before the landslide
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LandTrendr

The LandTrendr algorithm was originally developed from a tra-
jectory-based method for monitoring deforestation and logging 
activities in the USA (Kennedy et al. 2007). LandTrendr has been 
used for various applications, i.e. forest disturbance or quanti-
fication of biomass, investigating changes at the earth surface 
in time series of satellite images. Examples are published by 
Pflugmacher et al. (2014), Kennedy et al. (2018) and De Jong et al. 
(2021). LandTrendr detects changes in NDVI on an annual basis, 
which may also be suitable for landslide detection and dating 
in vegetated areas. Figure 2c shows the conceptual approach of 
LandTrendr. LandTrendr comprises six main steps (Kennedy et al. 
2018): despiking, identifying probable vertices, culling by angle 
change, identifying best path for maxSegments, creating succes-
sively simpler models and picking the best model.

In the LandTrendr method, the assignment of eight parameters 
is quite challenging. Here, we summarized the LandTrendr param-
eters among 19 publications related to the application of land 
cover and land use around the world (Yang et al. 2018; Kennedy 
et al. 2018; Xu et al. 2019; Hislop et al. 2019; Hurtado and Lizarazo 
2019; Filippelli et al. 2020; Mugiraneza et al. 2020; Xiao et al. 2020b; 
Giannetti et al. 2020; De Jong et al. 2021; Matsala et al. 2021; Ni et al. 
2021; Powers 2021; Rodman et al. 2021; Gomez 2021; Kolecka 2021; 
Komba et al. 2021; Long et al. 2021; Runge et al. 2022). From this 
literature overview two main points are concluded: (1) five out of 
the eight parameters do not vary substantially among those appli-
cations when comparing to the default parameters (Kennedy et al. 
2018), e.g. spikeThreshold, vertexCountOvershoot, pvalThresh-
old, bestModelProportion and minObservationNeeded. (2) The 
remaining three parameters are adjusted as a function of the aim 
of each case study, e.g. maxSegments, preventOneYearRecovery 
and recoveryThreshold.

The maxSegments is defined as the maximum number of seg-
ments during the LandTrendr fitting procedure. Besides the amount 
of landslides happening at the same area in different years, the 
number of segments also indicates vegetation disturbance caused 
by other processes than landslides. Therefore, we tested different 
maxSegments from 6 to 10, and found the best results for a max-
Segments of 9. The recoveryThreshold is calculated as 1/recovery 
years, related to the vegetation recovery samples. The disturbance 
by landslides often damaged the forest growth more intensely than 
other indicators, e.g. wildfire and harvest. We therefore use a land-
slide recovery of one year as the reference of recoveryThreshold and 
the decision of preventing 1 year recovery to “false”.

The image collection calculated in LandTrendr has the same pre-
processing (criteria 1 and 2) as SWADE. The parameter set used in 
this study is listed as maxSegments (9), spikeThreshold (0.9), ver-
texCountOvershoot (3), preventOneYearRecovery (false), recovery-
Threshold (1.0), pvalThreshold (0.05), bestModelProportion (0.75) 
and minObservationsNeeded (6). The concept of other LandTrendr 
parameters and functions can be found in Kennedy et al. (2018).

Quantification of landslide dating precisions

Our validation database consists of 66 landslides that have occurred 
between 1985 and 2017 in the Buckinghorse River area, Canada. The 
dates of these landslides have been manually determined based on 

Landsat, Sentinel-2 and lidar imagery by Deijns et al. (2020). As a 
result, the timing of the landslides used for validating our results is a 
time range spanning from the nearest pre- and post-landslide image. 
Similarly, time of landslide occurrence by the (semi-)automatic meth-
ods evaluated here is also given by a range spanning from the nearest 
pre- and post-landslide image (Fig. 4).

Figure 4 illustrates how we determined and defined accuracies 
and uncertainties of the landslide dating. We slightly modified the 
approach proposed by Reiche et al. (2018), and define the dating accu-
racy as the time difference between the middle date of the manually 
detected date range and the middle date of the date range estimated 
by the (semi-)automatic dating methods (mean time lag). Similarly, 
we define the uncertainty range as the minimum to maximum time 
difference between the manually and (semi-)automatically detected 
time ranges.

Results
In this section, we first compare the accuracy of the three landslide 
dating approaches: SWADE, harmonic modelling, and LandTrendr 
(“Accuracy of the landslide dating approaches” section). Then, we 
present the effect of landslide area on detection accuracy (“Effect 
of landslide area on dating accuracy” section) as well as the effect 
of landslide occurrence year on detection accuracy (“Effect of land-
slide occurrence year on dating accuracy” section). Next, to fur-
ther illustrate the concept of landslide detection using SWADE, we 
present and discuss the detection of three representative example 
landslides in detail (“Detailed examples of landslide dating with 
SWADE” section).

Accuracy of the landslide dating approaches

Table 2 (in the Appendix) shows the landslide inventory and the 
landslide dating results in the Buckinghorse River area, Canada. 

Fig. 4  Accuracy and uncertainty assessment for landslide dating 
methods. Three situations can occur: a separation, b interaction, 
c integration. The manually detected date range of landslide occur-
rence is shown by the blue box and the (semi-)automatically esti-
mated date range of landslide occurrence by the red box. The accu-
racy is shown by the mean (black curly brackets; referred to as time 
lag following Reiche et al. (2018)). The uncertainties are shown by 
the minimum (green curly brackets) and maximum (grey curly brack-
ets) time difference between the manual landslide timing results and 
estimated landslide timing results
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The minimum, mean and maximum time lags have been analysed 
to compare the different landslide dating results. The accuracies 
of landslide dating are reported in days except for the LandTrendr 
method, where we use the unit of year because this method com-
pares land cover changes at a yearly basis. The results of the non-
detrended harmonic and detrended harmonic methods are taken 
from Deijns et al. (2020).

To distinguish the variety of all landslide dating results, the 
accuracy is constrained into different categories, e.g. 0–30, 0–180, 
0–365, 0–730 and 0–1472 days. Figure 5 summarizes the percentages 
of dated landslides among different accuracy categories. SWADE2 
and detrended harmonic modelling results have the highest land-
slide dating accuracy in different accuracy categories indicated as 
dark blue and dark brown in Fig. 5.

SWADE1, identifying the most probable landslide date, has 
accuracies of 11%, 41%, 52%, 62% and 71% in the 0–30-, 0–180-, 
0–365-, 0–730- and 0–1472-day accuracy categories, respectively. 
Due to the time difference of manually pre- and post-landslide 
images and the temporal resolution of satellites, the uncertainty 
has been evaluated by the minimum and maximum time lag in 
the landslide dating results. The accuracies of minimum time lag 
reached 24%, 44%, 53%, 64% and 71% in the 0–30-, 0–180-, 0–365-, 
0–730- and 0–1472-day accuracy categories, respectively. And the 
accuracies of maximum time lag were 3%, 27%, 48%, 58% and 71% 
in the 0–30-, 0–180-, 0–365-, 0–730- and 0–1472-day accuracy cat-
egories, respectively.

SWADE2, with the two most probable landslide dating results, 
has a higher accuracy than SWADE1 (Appendix Table 2 and Fig. 5), 
which logically follows from the fact that SWADE2 provides the two 
most probable landslide dates. SWADE2 yields accuracies of 17%, 
58%, 68%, 80% and 91% of the landslides within the categories of 
0–30, 0–180, 0–365, 0–730 and 0–1472 days, respectively. The accu-
racies of minimum time lag reaches 37%, 61%, 70%, 83% and 92% 
within the 0–30-, 0–180-, 0–365-, 0–730- and 0–1472-day accuracy 
categories, respectively.

The detrended and non-detrended harmonic modelling results 
have similar accuracies compared to SWADE2 and SWADE1, respec-
tively. The detrended harmonic modelling overall leads to higher 
accuracies than non-detrended harmonic modelling. Compared to 
the SWADE and harmonic modelling approaches, LandTrendr is 
not successful or suitable for landslide dating. LandTrendr is based 
on comparison of yearly averaged NDVI maps, and consequently its 
accuracy is set to zero in the accuracy categories of 0–30 days and 
0–180 days. The percentages of dated landslides of LandTrendr are 
17%, 24% and 42% in the 0–365-, 0–730- and 0–1472-day accuracy 
categories, respectively.

Effect of landslide area on dating accuracy

Figure 6 shows that the landslide area affects the landslide dating 
accuracy in the Buckinghorse River area, Canada. The percentage 
of dated landslides in Fig. 6 has been calculated according to the 
successfully dated landslides in the corresponding area class (col-
oured points and lines in Fig. 6) and the sum of landslides in the 
corresponding area class (grey bar in Fig. 6). For the smaller land-
slides (≤ 3 ×  104  m2), the percentage of dated landslides is generally 
lower than in the large size classes. This trend is particularly evi-
dent for the most accurate dating category of 0–30 days, and also 
mostly evident for the SWADE methods which seem more sensitive 
to landslide area in this accuracy category than the other methods. 
The dependency of detection accuracy on landslide area is likely 
explained by the limited number of pixels covered by small land-
slides on the moderate spatial resolution of the Landsat images, 
which limits the success rate of detection.

For LandTrendr, the landslide area does not vary significantly 
when comparing to other landslide dating results. The percentage 
remains stable among different landslide area ranges within the 
accuracy category of 0–365 days (Fig. 6c); but within the accuracy 
category of 0–730 days (Fig. 6d), there is significant increasing with 
landslide area from 6–10 ×  104  m2 to >  105  m2.

Effect of landslide occurrence year on dating accuracy

The number of landslides in the study area is relatively constant, 
except for an increase in the year range 2015–2017 because a large 
number of 19 landslides occurred in 2016 (grey bars in Fig. 7). 
The number of available Landsat images increases from 1985 to 
2017, increasing from 20 to 60 images per year (blue bars shown in 
Fig. 7). These increases mostly result from the launch of Landsat-7 
and Landsat-8, making new images available after July of 1999 and 
April of 2013 in the study area, respectively. This increase in images 
affects the accuracy of landslide dating.

For the year range of 2000–2014, the availability of more sat-
ellite images enabled the landslide dating accuracies to increase 
for the SWADE and harmonic modelling approaches, in particular 
for accuracy categories of 0–180, 0–365 and 0–730 days. However, 
the percentages of successfully dated landslides in the year range 
2015–2017 is relatively low, which is because most landslides in the 
year range 2015–2017 happened in August 2016, which lacked ample 
post-landslide images for accurate detection.

Fig. 5  The percentages of successfully dated landslides among dif-
ferent accuracy categories. The 0–1472-day accuracy category is 
highlighted here, as being consistent to the calculated maximum 
accuracy by Deijns et al. (2020). Error bars are constrained by the 
maximum time lag (low points) and the minimum time lag (high 
points)
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For the year ranges 1990–1994 and 1995–1999, the numbers of avail-
able satellite images are similar while the percentages of successfully 
dated landslides are relatively different among different accuracy cat-
egories. In the 0–30-day accuracy, the percentage of dated landslide of 
year range of 1995–1999 is lower than that of 1990–1994. This is because 
eight out of twelve landslides in the year range of 1995–1999 spanned 
the winter season in the manual detection, leading to a relatively low 
accuracy. The percentages of successfully dated landslides in the year 
range of 1995–1999 increase rapidly with the relaxation of accuracy 
categories. This is mainly because the characteristics of the landslides 
in this year range are: a rapid NDVI decreasing response due to the 

landslide and a long NDVI recovery period. Hence, these landslides are 
easily detected by the SWADE and harmonic modelling approaches.

Detailed examples of landslide dating with SWADE

In this section, to further illustrate the principle of landslide detec-
tion based on Landsat imagery using SWADE, we show the dating 
of three selected landslides in detail (Fig. 8). These examples follow 
the three detection situations as illustrated in the flow diagram of 
Fig. 3.

Fig. 6  The percentage dis-
tribution of dated landslides 
in different ranges of land-
slide area within a 0–30-day, 
b 0–180-day, c 0–365-day and 
d 0–730-day accuracy catego-
ries. The grey bar and the right 
y-axis indicates the number of 
landslides in the correspond-
ing area range

Fig. 7  The percentage distribution of dated landslides in different 
ranges of landslide occurrence year within a 0–30-day, b 0–180-day, 
c 0–365-day and d 0–730-day accuracy categories. The blue bars 

indicate the number of satellite images per year in the correspond-
ing year range and the grey bars indicate the number of landslides in 
the corresponding year range
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1. Situation I, landslide LS28 (Fig. 8a). Before the landslide occurs, 
the CDNDVI_w is a horizontal line. The CDNDVI_w of Land-
slide LS28 remains roughly constant until 1995–10-18 (pre-
SWADE-a, the most probable pre-landslide date range). The 
NDVI values at the landslide location  (NDVIL line) and for the 
forest  (NDVIF line) were in that time period noticeably similar, 
meaning that before the landslide occurred (1997–08-04), the 
vegetation growth rate in the undisturbed forest zone was simi-
lar to that in the pre-landslide zone. After the landslide event 
took place, the CDNDVI_w values increased significantly as a  
result of vegetation removal by this landslide. The accuracy of  
landslide LS28 by SWADE1 is moderate with an accuracy of 
572 days in Fig. 8a. For this landslide, the accuracy of SWADE1 
is higher than that of non-detrended harmonic (708 days; 
1995–08-31) and LandTrendr approach (2 years; year 1995), but 
lower than that of detrended harmonic (476 days; 1996–04-20).

2. Situation II, landslide LS32 (Fig. 8b). Before the landslide 
occurs, the temporal development of CDNDVI_w is inclined 
upwards. The CDNDVI_w was linearly increasing before 
August, 2000, because the NDVI values at the forest location 
 (NDVIF line) were higher than the NDVI values at the land-
slide location  (NDVIL line). After landsliding, the CDNDVI_w 
increased significantly, again as a result of vegetation removal. 
The dating of landslide LS32 was precisely detected with an 
accuracy of 57 days by SWADE. For this landslide, the accu-

racy of SWADE is higher than that of the non-detrended har-
monic and detrended harmonic (204 days; 2001–03-09) and 
LandTrendr (< 1 year; Year 2000).

3. Situation III, landslide LS55 (Fig. 8c). Before the landslide 
occurs, the CDNDVI_w decreases. Several years prior to the 
landslide, the NDVI values at the forest location  (NDVIF line) 
were mostly lower than at the landslide location  (NDVIL line). 
After landslide LS55 occurred, CDNDVI_w increased signifi-
cantly as a result of vegetation removal by the landslide. The 
accuracy of landslide LS55 by SWADE1 is 724 days, and lower 
than the accuracy of the non-detrended harmonic (80 days; 
2016–06-22) and detrended harmonic (223 days; 2017–04-21), 
but higher than that of LandTrendr (2 years; Year 2014).

Discussion
Landslide activity in vegetation-covered zones leads to partial 
or complete vegetation removal. This results in a sudden NDVI 
decrease that can be observed in time series of satellite imagery. 
Landslides can therefore be dated by detecting these NDVI drops 
in the available satellite images in the archives (e.g. Coe et al. 2018; 
Dewitte et al. 2021). We have used this concept to develop a novel 
automatic method (SWADE) for landslide dating by analysing the 
Landsat images archived in Google Earth Engine.

Compared to existing and previously published semi-automatic 
landslide dating methods (Kennedy et al. 2018; Deijns et al. 2020), 

Fig. 8  Examples of landslide dating with SWADE compared with 
the other methods for landslides LS28, LS32 and LS55 shown in 
Appendix Table 2. The y-axis from left to right presents the temporal 
development of Landslide NDVI, Forest NDVI and Cumulative NDVI 
difference (CDNDVI_w). The vertical black line shows the actual date 
range of the landslide. The dotted black line and dotted dark brown 

line show the time series of Landslide NDVI and Forest NDVI, respec-
tively. The solid blue line shows the value of CDNDVI_w. The light 
green bar shows the dating result year from LandTrendr. The six col-
oured shapes represent the actual date and five results derived from 
five landslide dating approaches, and all represents the actual or 
estimated pre-image dates
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SWADE not only enables automatic landslide dating, but does also 
not require expert judgement. In contrast to the harmonic mod-
elling and LandTrendr approach, SWADE is applicable in regions 
where a well-developed seasonal vegetation cycle is absent. In addi-
tion, SWADE can be utilized to detect other geomorphic hazards if 
this hazard event causes damage to the vegetation. The harmonic 
modelling approach (Deijns et al. 2020) typically detects multiple 
potential dates of landslide occurrence, after which expert judge-
ment is required to define the most-likely landslide date. SWADE, 
on the other hand, generates the date of landslide occurrence 
through segmenting principles in an automatic way, providing the 
two most probable results to the land use managers. LandTrendr 
(Kennedy et al. 2018), originally developed for landslide dating on 
an annual basis, results in comparatively low accuracies and is not 
suitable for dating the landslides in the Buckinghorse River area, 
Canada.

Applicability of SWADE beyond Buckinghorse River area

We expect that SWADE can be applied for landslide detection in 
contrasting vegetated areas worldwide, regardless of vegetation 
types (e.g. forest, grassland, tundra) or seasonal vegetation cycles. 
In this study, SWADE is applied to a region in the temperate / con-
tinental climates of British Columbia characterized by a strong har-
monic, sinusoidal cycle of the vegetation and hence of the NDVI. 
Importantly, SWADE has the potential to be successfully applied 
in areas where less clear seasonal cycles exist, such as the tropics, 
in contrast to harmonic modelling approaches (Deijns et al. 2020). 
In bare areas, SWADE is not applicable for landslide dating, and 
other landslide dating approaches should be developed and used.

SWADE could be used as a tool for constructing landslide mag-
nitude-frequency relations in remote areas (Guzzetti et al. 2005; Fu 
et al. 2020). In the past decades, much work has focused on spatial 
landslide detection through remote sensing. Using the spectral, 
spatial, shape or contextual signals landslide borders can be pro-
duced through single or combined image analysis techniques, for 
example, object-oriented methods, change detection methods and 
machine learning methods (Nichol and Wong 2005; Borghuis et al. 

2007; Martha et al. 2010; Stumpf and Kerle 2011; Hölbling et al. 2012; 
Qi et al. 2020; Amatya et al. 2021). To date these landslides, SWADE 
could serve as a useful tool providing accurate temporal informa-
tion on landslide occurrence. Hence, SWADE has the potential to 
be implemented in a (regional) spatio-temporal landslide detection 
framework, for the automatic construction of magnitude-frequency 
distributions.

Factors affecting dating accuracy

Similar to any other remote sensing approaches, the accuracy of 
SWADE is affected by data quality and image availability. The time 
range of our study is from 1985 to 2017, as constrained by Landsat 5 
image availability. At the start or end of the available satellite image 
time series, the landslide dating accuracy is lower than the accuracy 
in the middle of the time range, as was also concluded by Deijns 
et al. (2020) for the harmonic modelling approaches. The reason 
is that a break in slope for the CDNDVI can only be successfully 
detected when there is a sufficiently long CDNDVI curve pre- and 
post-landslide (Figs. 3 and 8). An example is shown for landslide 
LS65 (Fig. 9) where the landslide occurs at the end of the available 
time series and the change in NDVI cannot be detected.

Forest removal by landslides, and hence a sudden drop in NDVI 
values, forms the basis for our landslide dating approach. When 
analysing NDVI time series, the vegetation regrowth after a land-
slide is fundamental to the landslide dating results. Our study 
assumed that the remaining vegetation after a landslide will recover 
to the same or similar vegetation type in the pre-landslide period. 
However, the vegetation cluster type varies drastically along the 
forest evolution in Canada (Geertsema et al. 2009). Two situations 
about plant succession are listed. (1) The colonization of Senecio 
and cotton grasses, then of grasses and horsetails and forb occurred 
after tundra mudflows (Lambert 1972). (2) After landsliding in Brit-
ish Columbia, typically first deciduous trees developed that are 
later replaced by spruce forest (Smith et al. 1986). Based on these 
two situations a likely scenario of the succession in the study area 
might be “spruce forest—landslide—forbs—shrubs—deciduous 
trees—spruce forest” in the long run. Differences in vegetation 

Fig. 9  Landslide dating 
result for landslide LS65. This 
landslide takes place at the 
end of the available time 
series of images in July 2017 
and consequently the drop in 
NDVI cannot be detected and 
accurate dating is hampered. A 
longer time series is required. 
See Fig. 8 for full legend
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characteristics between the pre- and post-landslide may affect 
the NDVI values and therefore have an impact on date detection 
accuracy.

Another complicating factor is the degree of removal of the for-
est cover by the landslides. In large landslides, there might be a 
spatial heterogeneity in vegetation cover: translated rafts of vegeta-
tion exist in the dataset of our case study. In addition, the vegeta-
tion damage depends to some extent on the rate of movement as 
well (Geertsema et al. 2009). Generally, higher velocity and higher 
energy landslides may displace more vegetation and have more 
exposed soil. Therefore, high-energy landslides are likely more 
accurately detected by (semi-)automatic dating methods.

It is challenging for the here evaluated methods to date complex, 
overlapping or re-activated landslides. For example, landslides LS20 
and LS28 happened in the years 1995–1996 and 1997, respectively, 
and partly overlap. The additional vegetation disturbance of LS28 
hindered the SWADE method to segment the NDVI time series into 
the pre- and post-landslide segments. Both SWADE and harmonic 
modelling could only detect the strongest NDVI decrease during the 
formation of LS20, leading to the false negative detection of LS28.

The images in the optical satellites are often contaminated by 
clouds, cirrus and cloud shadows at the moments of landslide 
occurrences because landslides are often triggered by heavy pre-
cipitation events (Sassa et al. 2009, 2015). Although cloud masking 
is applied here before imagery is used as input for SWADE, cloud 
contamination remains a problem. A promising alternative is the 
use of microwave (SAR) images as these images are almost unaf-
fected by weather conditions (Henderson and Lewis 1998).

Conclusions
We present an innovative automatic landslide dating approach 
using time series of Landsat imagery. This new method, SWADE 
(Segmented WAvelet-DEnoising and Stepwise linear fitting), 
requires long time series image collections, eliminates cloud 
contamination, fills data gaps, and minimizes seasonal changes. 
SWADE applies wavelet transformation to remove noise, and com-
bines a decision tree with stepwise linear fitting to date landslide 
occurrence. The accuracy of SWADE is evaluated using 66 land-
slides in the Buckinghorse River area, northeastern British Colum-
bia, Canada, and compared to the previously published semi-auto-
matic harmonic modelling and LandTrendr methods.

The SWADE results are promising for dating of landslides in 
vegetated and temperate-climate regions. SWADE detects 52% of 
the landslides within a maximum error of 1 year, and 62% of the 
landslides within a maximum error of 2 years, when considering 
the most-probable landslide date range identified by SWADE. When 
considering the two most-probable landslide date range, these 

numbers increase to 68% and 80%, respectively. By comparison, 
harmonic modelling detects 79% of the landslides with a maximum 
error of 1 year, and 82% of the landslides with a maximum error 
of 2 years, but requires expert judgement making this model more 
subjective and time-intensive. LandTrendr, originally developed for 
mapping deforestation, is poorly applicable to landslide detection 
having an accuracy of 42% within a maximum error of 2 years.

SWADE might also be applied in areas where less clear seasonal 
cycles exist, in contrast to harmonic approaches, and feasible to 
other geomorphic hazards if the occurrence is followed by forest 
removal. The new SWADE method provides a promising automatic 
method for landslide dating in vegetated remote areas, which may 
substantially contribute to landslide magnitude-frequency and 
hazard assessment.

The landslide temporal detection may be further improved by 
(i) combining with multi-source optical remote sensing images (e.g. 
Sentinel-2 and Landsat 9); (ii) combining with cloud-independent 
SAR imagery (e.g. Sentinel-1); and (iii) analysing and comparing 
the vegetation disturbance between landslides and wildfires.

Acknowledgements 
The authors acknowledge funding from the China Scholarship Coun-
cil (file number: 202006410009). This paper benefited from useful 
discussions with Xuejiao Hou, Chufeng Guo and Danghan Xie.

Data Availability 
Data and code are shared at https:// github. com/ Sheng Fu2022/ 
SWADE.

Declarations 

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party 
material in this article are included in the article’s Creative Com-
mons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of 
this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

923

https://github.com/ShengFu2022/SWADE
https://github.com/ShengFu2022/SWADE
http://creativecommons.org/licenses/by/4.0/


   Landslides 20 · (2023)   

Original Paper
A

p
p

en
d

ix

Ta
b

le
 2

  
Su

m
m

ar
y 

ta
b

le
 o

f l
an

d
sl

id
e 

in
ve

n
to

ry
 a

n
d

 la
n

d
sl

id
e 

d
at

in
g

 re
su

lt
s 

fr
o

m
 t

h
e 

d
iff

er
en

t 
m

et
h

o
d

s 
th

at
 a

re
 c

o
m

p
ar

ed
 in

 t
h

is
 w

o
rk

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

1
9.

06
19

85
–

09
-2

0
19

85
–

09
-2

9
*

*
*(

*-
*)

*
*

*(
*-

*)
*

*
*(

*-
*)

*
*

*(
*-

*)
20

02
17

 (
17

–1
8)

2
1.

65
19

85
–

09
-2

0
19

85
–

09
-2

9
20

14
–

08
-1

9
20

14
–

08
-2

7
10

,5
59

 
(1

0,
55

1–
10

,5
68

)

20
01

–
08

-1
6

20
01

–
08

-2
4

58
08

 
(5

80
0–

58
17

)

* 
* 

*(
*-

*)
19

86
–

04
-0

9
19

86
–

04
-

16

20
0 

(1
92

–
20

8)
19

91
6 

(6
–7

)

3
2.

07
19

86
–

07
-2

1
19

86
–

08
-0

6
19

86
–

05
-1

8
19

86
–

05
-2

7
68

 (
55

–8
0)

20
13

–
10

-1
1

20
13

–
10

-1
2

68
 (

55
–8

0)
19

87
–

05
-2

1
19

87
–

07
-0

1
31

6 
(2

88
–

34
5)

19
87

–
05

-0
5

19
87

–
05

-
21

28
8 

(2
72

–
30

4)
19

85
2 

(1
–2

)

4
8.

1
19

87
–

08
-2

5
19

87
–

09
-1

0
20

13
–

09
-1

0
20

13
–

09
-1

7
95

08
 

(9
49

7–
95

20
)

19
87

–
09

-1
9

19
87

–
09

-2
6

20
 (

9–
32

)
*

*
*(

*-
*)

*
*

*(
*-

*)
19

91
4 

(4
–5

)

5
13

.1
8

19
87

–
07

-2
4

19
87

–
08

-2
5

20
13

–
10

-1
2

20
13

–
10

-1
9

95
64

 
(9

54
5–

95
84

)

19
87

–
07

-1
7

19
87

–
07

-2
4

20
 (

0–
39

)
*

*
*(

*-
*)

*
*

*(
*-

*)
19

99
12

 (
12

–1
3)

6
7.

49
19

87
–

07
-0

1
19

87
–

07
-2

4
20

14
–

09
-1

2
20

14
–

09
-1

3
99

24
 

(9
91

2–
99

36
)

19
87

–
05

-2
1

19
87

–
07

-0
1

32
 (

0–
64

)
19

88
–

06
-0

1
19

88
–

06
-1

7
33

2 (3
13

–3
52

)
19

88
–

06
-0

1
19

88
–

06
-

17

33
2 (3

13
–3

52
)

19
85

3 
(2

–3
)

7
3.

01
19

87
–

07
-2

4
19

87
–

08
-2

5
20

16
–

02
-0

6
20

16
–

02
-0

7
10

,4
08

 
(1

0,
39

2–
10

,4
25

)

19
87

–
09

-1
9

19
87

–
09

-2
6

44
 (

25
–6

4)
19

88
–

05
-0

7
19

88
–

06
-

01

28
4 (2

56
–3

13
)

19
88

–
05

-0
7

19
88

–
06

-
01

28
4 

(2
56

–
31

3)
19

87
1 

(0
–1

)

8
8.

54
19

87
–

09
-2

6
19

88
–

05
-0

7
19

87
–

07
-2

4
19

87
–

08
-2

5
16

0 (3
2–

28
8)

20
13

–
10

-1
9

20
13

–
10

-2
0

16
0 (3

2–
28

8)
19

88
–

05
-0

7
19

88
–

06
-

01

12
4 (0

–2
49

)
19

88
–

05
-0

7
19

88
–

06
-

01

12
4 (0

–2
49

)
19

96
9 

(8
–1

0)

9
6.

48
19

87
–

07
-2

4
19

87
–

08
-2

5
*

*
*(

*-
*)

*
*

*(
*-

*)
19

88
–

05
-0

7
19

88
–

06
-

01

28
4 (2

56
–3

13
)

19
87

–
05

-2
1

19
87

–
07

-
01

60
 (

23
–9

6)
19

87
1 

(0
–1

)

10
12

.9
3

19
87

–
08

-2
5

19
87

–
09

-1
0

19
87

–
08

-2
5

19
87

–
09

-1
0

0 
(0

–1
6)

20
13

–
09

-1
0

20
13

–
09

-1
7

0 
(0

–1
6)

19
88

–
03

-2
9

19
88

–
05

-
07

22
8 

(2
01

–
25

6)
19

88
–

03
-2

9
19

88
–

05
-

07

22
8 

(2
01

–
25

6)
19

93
6 

(6
–7

)

11
1.

2
19

89
–

08
-3

0
19

90
–

05
-1

3
19

90
–

08
-2

6
19

90
–

09
-0

2
23

6 
(1

05
–

36
8)

*
*

23
6 

(1
05

–
36

8)
19

90
–

04
-2

0
19

90
–

05
-1

3
11

6 (0
–2

56
)

19
90

–
04

-2
0

19
90

–
05

-1
3

11
6 (0

–2
56

)
19

89
1 

(0
–2

)

924



 Landslides 20 · (2023) 

Ta
b

le
 2

  
(c

o
n

ti
n

u
ed

)

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

12
2.

47
19

89
–

08
-3

0
19

90
–

07
-2

5
20

13
–

10
-0

3
20

13
–

10
-1

1
86

39
 

(8
47

1–
88

08
)

19
94

–
06

-0
2

19
94

–
06

-1
8

15
80

 
(1

40
8–

17
53

)

19
90

–
04

-2
0

19
90

–
05

-1
3

80
 (

0–
25

6)
*

*
*(

*-
*)

19
91

2 
(1

–3
)

13
7.

77
19

90
–

08
-1

7
19

90
–

08
-2

6
19

99
–

09
-1

2
19

99
–

09
-1

9
33

12
 (

33
04

–
33

20
)

19
93

–
07

-1
7

19
93

–
08

-0
2

10
68

 
(1

05
6–

10
81

)

19
91

–
06

-1
0

19
91

–
06

-1
7

29
6 

(2
88

–
30

4)
19

94
–

03
-3

0
19

94
–

04
-

06

13
20

 
(1

31
2–

13
28

)

19
99

9 
(9

–1
0)

14
8.

35
19

91
–

08
-1

3
19

91
–

10
-0

7
20

14
–

09
-2

0
20

14
–

09
-2

1
84

12
 

(8
38

4–
84

40
)

19
91

–
09

-3
0

19
91

–
10

-0
7

24
 (

0–
55

)
19

92
–

03
-3

1
19

92
–

05
-

02

21
9 

(1
76

–
26

3)
19

92
–

03
-3

1
19

92
–

05
-

02

21
9 

(1
76

–
26

3)
19

91
1 

(0
–1

)

15
4.

61
19

93
–

07
-1

7
19

93
–

08
-1

8
20

13
–

10
-1

9
20

13
–

10
-2

0
73

83
 

(7
36

7–
74

00
)

19
93

–
08

-2
5

19
93

–
09

-0
3

27
 (

7–
48

)
19

93
–

04
-1

2
19

93
–

04
-

28

10
4 (8

0–
12

8)
19

94
–

05
-0

8
19

94
–

05
-1

7
28

3 
(2

63
–

30
4)

20
14

21
 (

21
–2

2)

16
2.

04
19

93
–

07
-1

7
19

93
–

08
-1

8
19

94
–

02
-1

0
19

94
–

03
-2

1
21

1 
(1

76
–

24
7)

20
13

–
10

-0
3

20
13

–
10

-1
1

21
1 

(1
76

–
24

7)
19

94
–

03
-3

0
19

94
–

04
-

06

24
3 

(2
24

–
26

3)
19

94
–

05
-0

8
19

94
–

05
-1

7
28

3 
(2

63
–

30
4)

19
93

1 
(0

–1
)

17
12

.8
6

19
93

–
07

-1
7

19
93

–
08

-1
8

19
93

–
05

-3
0

19
93

–
06

-1
5

56
 (

32
–8

0)
20

13
–

10
-1

1
20

13
–

10
-1

2
56

 (
32

–8
0)

19
93

–
04

-2
8

19
93

–
05

-3
0

80
 (4

8–
11

2)
19

94
–

04
-1

5
19

94
–

05
-

01

26
4 

(2
40

–
28

8)
20

14
21

 (
21

–2
2)

18
21

.9
3

19
93

–
04

-2
8

19
93

–
06

-1
5

19
93

–
04

-1
2

19
93

–
04

-2
8

32
 (

0–
64

)
20

14
–

09
-1

2
20

14
–

09
-1

3
32

 (
0–

64
)

19
93

–
04

-1
2

19
93

–
04

-
28

32
 (

0–
64

)
19

93
–

04
-2

8
19

93
–

05
-

30

8 
(0

–4
8)

19
92

1 
(1

–2
)

19
6.

07
19

94
–

06
-0

2
19

94
–

06
-1

8
19

94
–

06
-1

8
19

94
–

06
-2

5
11

 (
0–

23
)

20
13

–
10

-1
1

20
13

–
10

-1
2

11
 (

0–
23

)
19

94
–

05
-2

4
19

94
–

06
-

02

13
 (

0–
25

)
19

94
–

05
-1

7
19

94
–

05
-

24

21
 (

9–
32

)
19

93
1 

(1
–2

)

20
14

.2
2

19
95

–
10

-1
8

19
96

–
04

-2
0

19
95

–
10

-1
1

19
95

–
10

-1
8

96
 (

0–
19

2)
20

13
–

10
-1

1
20

13
–

10
-1

2
96

 (
0–

19
2)

19
95

–
08

-3
1

19
95

–
09

-
09

13
6 (3

9–
23

3)
19

96
–

04
-2

0
19

96
–

04
-

27

96
 (

0–
19

2)
19

95
1 

(0
–2

)

21
6.

29
19

96
–

07
-2

5
19

96
–

08
-1

0
19

95
–

08
-0

8
19

95
–

08
-3

1
34

9 
(3

29
–

36
8)

*
*

34
9 

(3
29

–
36

8)
19

95
–

08
-3

1
19

95
–

09
-

09

33
3 

(3
20

–
34

5)
19

96
–

04
-2

7
19

96
–

05
-

22

85
 (6

4–
10

5)
19

93
4 

(3
–4

)

925



   Landslides 20 · (2023)   

Original Paper
Ta

b
le

 2
  

(c
o

n
ti

n
u

ed
)

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

22
3.

47
19

97
–

08
-2

0
19

98
–

04
-1

7
19

97
–

09
-0

5
19

97
–

09
-1

4
10

0 (0
–2

24
)

20
13

–
10

-0
3

20
13

–
10

-1
1

10
0 (0

–2
24

)
19

98
–

05
-1

9
19

98
–

05
-2

8
15

6 (3
2–

28
1)

19
98

–
05

-1
2

19
98

–
05

-
19

14
8 (2

5–
27

2)
19

93
5 

(4
–6

)

23
3.

39
19

97
–

08
-2

0
19

98
–

04
-1

7
19

94
–

05
-0

1
19

94
–

05
-0

8
13

24
 

(1
20

0–
14

47
)

20
13

–
09

-1
7

20
13

–
10

-0
3

13
24

 
(1

20
0–

14
47

)

19
94

–
03

-3
0

19
94

–
04

-
06

13
56

 (
12

32
–

14
79

)
19

94
–

05
-1

7
19

94
–

05
-

24

13
08

 
(1

18
4–

14
31

)

19
93

5 
(4

–6
)

24
5.

12
19

97
–

08
-2

0
19

98
–

04
-1

7
19

97
–

09
-1

4
19

97
–

09
-2

1
92

 (
0–

21
5)

20
13

–
10

-1
1

20
13

–
10

-1
2

92
 (

0–
21

5)
19

97
–

08
-1

3
19

97
–

08
-

20

12
4 (0

–2
47

)
19

98
–

04
-1

7
19

98
–

04
-

26

12
4 (0

–2
49

)
19

99
2 

(1
–3

)

25
7.

42
19

97
–

07
-1

9
19

98
–

05
-1

2
20

13
–

10
-1

2
20

13
–

10
-1

9
57

84
 

(5
63

2–
59

36
)

19
87

–
07

-0
1

19
87

–
07

-1
7

38
12

 
(3

65
5–

39
68

)

*
*

*(
*-

*)
*

*
*(

*-
*)

19
93

5 
(4

–6
)

26
5.

72
19

97
–

07
-1

9
19

98
–

05
-1

2
19

96
–

10
-0

4
19

96
–

10
-2

0
42

9 
(2

72
–

58
5)

20
13

–
10

-2
0

20
13

–
10

-2
7

42
9 

(2
72

–
58

5)
19

95
–

08
-3

1
19

95
–

09
-

09

83
2 

(6
79

–
98

5)
19

97
–

05
-0

9
19

97
–

06
-

10

20
4 (3

9–
36

8)
19

87
11

 (
10

–1
2)

27
7.

63
19

97
–

08
-2

0
19

98
–

04
-2

6
20

14
–

09
-1

2
20

14
–

09
-1

3
61

08
 

(5
98

3–
62

33
)

19
97

–
09

-1
4

19
97

–
09

-2
1

96
 (

0–
22

4)
19

97
–

08
-0

4
19

97
–

08
-1

3
13

6 
(7

–2
65

)
19

98
–

05
-1

2
19

98
–

05
-

19

14
4 (1

6–
27

2)
19

87
11

 (
10

–1
2)

28
14

.3
1

19
97

–
08

-0
4

19
97

–
08

-2
0

19
95

–
10

-1
8

19
96

–
04

-2
0

57
2 

(4
71

–
67

2)
20

14
–

09
-1

2
20

14
–

09
-1

3
57

2 
(4

71
–

67
2)

19
95

–
08

-3
1

19
95

–
09

-
09

70
8 

(6
95

–
72

0)
19

96
–

04
-2

0
19

96
–

04
-

27

47
6 

(4
64

–
48

7)
19

95
3 

(2
–3

)

29
9.

86
19

97
–

08
-2

0
19

98
–

05
-1

2
19

98
–

04
-1

7
19

98
–

04
-2

6
11

2 (0
–2

49
)

20
14

–
09

-0
5

20
14

–
09

-1
2

11
2 (0

–2
49

)
*

*
*(

*-
*)

19
98

–
05

-0
3

19
98

–
05

-1
2

12
8 (0

–2
65

)
19

97
1 

(0
–2

)

30
11

.1
2

19
98

–
05

-1
9

19
98

–
06

-0
4

19
98

–
04

-0
1

19
98

–
04

-1
7

48
 (

32
–6

4)
20

13
–

10
-0

3
20

13
–

10
-1

1
48

 (
32

–6
4)

*
*

*(
*-

*)
*

*
*(

*-
*)

19
99

2 
(1

–2
)

31
6.

01
19

99
–

07
-1

0
19

99
–

07
-1

7
19

99
–

03
-1

9
19

99
–

03
-2

8
11

2 
(1

04
–

12
0)

20
13

–
10

-1
2

20
13

–
10

-1
9

11
2 

(1
04

–
12

0)
19

99
–

04
-2

9
19

99
–

06
-1

6
52

 (
24

–7
9)

19
99

–
04

-2
9

19
99

–
06

-
16

52
 (

24
–7

9)
19

99
1 

(0
–1

)

32
4.

03
20

00
–

08
-2

0
20

00
–

09
-1

4
20

00
–

10
-1

6
20

01
–

03
-0

9
11

6 (3
2–

20
1)

20
13

–
09

-1
7

20
13

–
10

-0
3

11
6 (3

2–
20

1)
20

01
–

03
-0

9
20

01
–

04
-1

0
20

4 (1
76

–2
33

)
20

01
–

03
-0

9
20

01
–

04
-

10

20
4 

(1
76

–
23

3)
20

00
1 

(0
–1

)

926



 Landslides 20 · (2023) 

Ta
b

le
 2

  
(c

o
n

ti
n

u
ed

)

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

33
4.

48
20

02
–

10
-3

0
20

03
–

05
-1

0
20

04
–

09
-2

4
20

04
–

09
-2

5
59

9 
(5

03
–

69
6)

19
94

–
10

-1
5

19
95

–
03

-1
7

59
9 

(5
03

–
69

6)
20

03
–

02
-2

7
20

03
–

03
-0

7
28

 (
0–

12
8)

20
04

–
07

-2
3

20
04

–
07

-
30

53
9 

(4
40

–
63

9)
19

93
10

 (
9–

11
)

34
3.

2
20

04
–

08
-1

5
20

05
–

04
-2

9
20

04
–

07
-1

5
20

04
–

07
-2

2
15

6 (2
4–

28
8)

19
94

–
10

-1
5

19
95

–
03

-1
7

15
6 (2

4–
28

8)
20

04
–

07
-1

4
20

04
–

07
-1

5
16

0 (3
1–

28
9)

20
04

–
07

-1
4

20
04

–
07

-
15

16
0 (3

1–
28

9)
19

99
6 

(5
–7

)

35
3.

05
20

03
–

08
-2

1
20

03
–

08
-2

9
20

04
–

04
-2

6
20

04
–

05
-1

1
25

2 
(2

41
–

26
4)

19
99

–
08

-1
9

19
99

–
08

-2
6

25
2 

(2
41

–
26

4)
20

04
–

06
-0

4
20

04
–

06
-

05

28
4 

(2
80

–
28

9)
20

04
–

06
-0

5
20

04
–

06
-

12

28
8 

(2
81

–
29

6)
19

99
5 

(4
–5

)

36
5.

43
20

04
–

07
-2

3
20

04
–

08
-1

5
20

13
–

10
-1

1
20

13
–

10
-1

2
33

56
 

(3
34

4–
33

68
)

20
04

–
06

-1
2

20
04

–
06

-2
0

49
 (

33
–6

4)
20

04
–

04
-2

5
20

04
–

04
-

26

10
0 (8

8–
11

2)
20

04
–

05
-2

8
20

04
–

06
-

04

64
 (

49
–7

9)
19

87
18

 (
17

–1
8)

37
3.

34
20

05
–

06
-0

7
20

05
–

07
-1

8
20

14
–

09
-1

3
20

14
–

09
-2

0
33

68
 

(3
34

4–
33

92
)

20
05

–
03

-2
8

20
05

–
04

-0
4

88
 (6

4–
11

2)
20

04
–

06
-0

5
20

04
–

06
-1

2
38

4 
(3

60
–

40
8)

20
05

–
06

-0
8

20
05

–
06

-
16

16
 (

0–
40

)
19

85
21

 (
20

–2
1)

38
6.

67
20

05
–

08
-2

6
20

05
–

09
-2

7
20

03
–

10
-0

9
20

03
–

10
-2

5
69

5 (6
71

–7
19

)
19

93
–

09
-1

0
19

93
–

09
-1

9
69

5 
(6

71
–

71
9)

20
04

–
04

-2
5

20
04

–
04

-
26

50
4 

(4
87

–
52

0)
20

05
–

04
-1

3
20

05
–

04
-

21

14
7 

(1
27

–
16

7)
20

14
9 

(9
–1

0)

39
2.

14
20

05
–

08
-0

3
20

05
–

08
-1

9
20

06
–

02
-1

8
20

06
–

02
-2

6
19

5 
(1

83
–

20
7)

19
94

–
06

-1
8

19
94

–
06

-2
5

19
5 

(1
83

–
20

7)
20

05
–

06
-0

7
20

05
–

06
-

08

65
 (

56
–7

3)
20

06
–

05
-1

8
20

06
–

05
-

26

28
4 

(2
72

–
29

6)
20

13
8 

(8
–9

)

40
2.

48
20

08
–

08
-0

3
20

08
–

08
-1

8
20

08
–

07
-0

1
20

08
–

07
-1

0
36

 (
24

–4
8)

19
95

–
04

-2
5

19
95

–
05

-1
1

36
 (

24
–4

8)
20

08
–

09
-0

3
20

08
–

09
-

04

24
 (

16
–3

2)
20

09
–

07
-2

8
20

09
–

07
-

29

35
2 

(3
44

–
36

0)
19

85
24

 (
23

–2
4)

41
9.

21
20

10
–

10
-1

1
20

11
–

05
-1

5
20

13
–

09
-1

0
20

13
–

09
-1

7
96

0 
(8

49
–

10
72

)
20

10
–

10
-0

3
20

10
–

10
-0

4
11

6 (7
–2

24
)

20
10

–
07

-2
3

20
10

–
07

-
24

18
8 (7

9–
29

6)
20

11
–

05
-0

8
20

11
–

05
-1

5
10

4 (0
–2

16
)

19
85

26
 (

25
–2

7)

42
9.

61
20

10
–1

1-
05

20
11

–
06

-0
1

20
13

–
10

-1
1

20
13

–
10

-1
2

96
7 

(8
63

–
10

72
)

20
10

–
10

-0
4

20
10

–
10

-1
1

13
3 (2

5–
24

0)
20

11
–

03
-0

4
20

11
–

03
-

20

23
 (

0–
13

5)
20

11
–

05
-0

8
20

11
–

05
-1

5
83

 (
0–

19
1)

20
14

4 
(3

–5
)

927



   Landslides 20 · (2023)   

Original Paper
Ta

b
le

 2
  

(c
o

n
ti

n
u

ed
)

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

43
2.

45
20

13
–

07
-1

5
20

13
–

07
-3

1
20

13
–

10
-0

3
20

13
–

10
-1

1
76

 (
64

–8
8)

19
94

–
05

-2
4

19
94

–
06

-0
2

76
 (

64
–8

8)
*

*
*(

*-
*)

20
13

–
07

-1
5

20
13

–
07

-
24

4 
(0

–1
6)

19
93

21
 (

20
–2

1)

44
2.

71
20

13
–

10
-0

3
20

14
–

05
-1

6
20

13
–

10
-2

7
20

13
–

10
-2

8
88

 (
0–

20
1)

*
*

88
 (

0–
20

1)
*

*
*(

*-
*)

20
14

–
02

-1
6

20
14

–
02

-1
7

24
 (

0–
13

7)
20

01
13

 (
12

–1
4)

45
8.

24
20

15
–1

1-
03

20
16

–
02

-0
6

20
16

–
10

-1
2

20
16

–
10

-1
9

30
0 (2

49
–3

51
)

20
14

–
09

-2
9

20
14

–
10

-0
6

30
0 

(2
49

–
35

1)
20

15
–

06
-2

7
20

15
–

06
-

28

17
6 

(1
28

–
22

4)
20

16
–

02
-0

6
20

16
–

02
-

07

48
 (

0–
96

)
20

14
2 

(1
–3

)

46
5.

05
20

16
–

06
-0

5
20

16
–

07
-2

3
20

13
–

09
-1

0
20

13
–

09
-1

7
10

20
 (

99
2–

10
47

)
19

95
–

06
-1

2
19

95
–

06
-2

1
10

20
 (

99
2–

10
47

)
20

16
–

06
-1

3
20

16
–

06
-2

1
12

 (
0–

40
)

20
17

–
05

-2
3

20
17

–
05

-
24

32
8 

(3
04

–
35

3)
20

02
15

 (
14

–1
5)

47
3.

52
20

16
–

07
-2

3
20

16
–

08
-0

8
20

16
–

10
-1

1
20

16
–

10
-1

2
72

 (
64

–8
1)

19
98

–
04

-2
6

19
98

–
05

-0
3

72
 (

64
–8

1)
20

16
–

06
-0

5
20

16
–

06
-1

3
52

 (
40

–6
4)

20
16

–
09

-2
6

20
16

–
09

-
26

57
 (

49
–6

5)
19

99
18

 (
17

–1
8)

48
2.

72
20

16
–

08
-0

8
20

16
–

10
-1

1
20

14
–

09
-0

4
20

14
–

09
-0

5
73

6 
(7

03
–

76
8)

19
98

–
04

-2
6

19
98

–
05

-0
3

73
6 

(7
03

–
76

8)
20

15
–

06
-2

0
20

15
–

06
-

27

44
4 

(4
08

–
47

9)
20

16
–

05
-1

2
20

16
–

05
-1

3
12

0 (8
7–

15
2)

19
85

32
 (

31
–3

2)

49
8.

75
20

16
–

08
-0

8
20

16
–

09
-2

5
20

16
–

04
-0

2
20

16
–

04
-0

3
15

2 
(1

27
–

17
6)

19
99

–
09

-0
3

19
99

–
09

-1
1

15
2 

(1
27

–
17

6)
20

15
–

05
-1

8
20

15
–

05
-

26

46
8 

(4
40

–
49

6)
20

16
–

04
-2

7
20

16
–

05
-

04

12
4 (9

6–
15

1)
19

99
18

 (
17

–1
8)

50
16

.3
7

20
16

–
08

-0
8

20
16

–
09

-2
5

20
16

–
08

-1
7

20
16

–
08

-2
4

12
 (

0–
39

)
19

99
–

08
-1

1
19

99
–

08
-1

9
12

 (
0–

39
)

20
16

–
06

-0
5

20
16

–
06

-1
3

84
 (

56
–1

12
)

20
16

–
06

-3
0

20
16

–
07

-
15

56
 (

24
–8

7)
20

14
3 

(2
–3

)

51
7.

63
20

16
–

08
-0

8
20

16
–

10
-1

1
20

16
–

10
-0

3
20

16
–

10
-1

1
28

 (
0–

64
)

19
93

–
04

-1
2

19
93

–
04

-2
8

28
 (

0–
64

)
20

16
–

06
-1

3
20

16
–

06
-2

1
84

 (4
8–

12
0)

20
16

–
09

-1
7

20
16

–
09

-
18

8 
(0

–4
1)

19
87

30
 (

29
–3

0)

52
7.

74
20

16
–

08
-0

8
20

16
–

10
-1

1
20

16
–

08
-2

4
20

16
–

08
-2

5
16

 (
0–

48
)

20
14

–
08

-2
8

20
14

–
09

-0
4

16
 (

0–
48

)
20

16
–

06
-1

3
20

16
–

06
-2

1
84

 (4
8–

12
0)

20
16

–
07

-1
6

20
16

–
07

-
23

52
 (

16
–8

7)
19

99
18

 (
17

–1
8)

928



 Landslides 20 · (2023) 

Ta
b

le
 2

  
(c

o
n

ti
n

u
ed

)

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

53
15

.1
4

20
16

–
08

-0
8

20
16

–
10

-1
1

20
16

–
08

-0
9

20
16

–
08

-1
6

28
 (

0–
63

)
19

99
–

09
-1

1
19

99
–

09
-1

2
28

 (
0–

63
)

20
16

–
06

-2
2

20
16

–
06

-
29

76
 (

40
–1

11
)

20
16

–
07

-3
1

20
16

–
08

-
01

40
 (

7–
72

)
19

99
18

 (
17

–1
8)

54
6.

02
20

16
–

08
-1

7
20

16
–

10
-1

1
20

16
–

08
-2

4
20

16
–

08
-2

5
20

 (
0–

48
)

20
14

–
08

-2
7

20
14

–
08

-2
8

20
 (

0–
48

)
20

16
–

06
-3

0
20

16
–

07
-1

5
68

 (
33

–1
03

)
20

16
–

07
-1

6
20

16
–

07
-

23

56
 (

25
–8

7)
20

14
3 

(2
–3

)

55
1.

98
20

16
–

08
-1

7
20

16
–

10
-1

1
20

14
–

09
-2

0
20

14
–

09
-2

1
72

4 
(6

96
–

75
2)

19
98

–
07

-2
2

19
98

–
08

-0
7

72
4 

(6
96

–
75

2)
20

16
–

06
-2

2
20

16
–

06
-

29

80
 (

49
–1

11
)

20
17

–
04

-2
1

20
17

–
04

-
29

22
3 

(1
92

–
25

5)
20

14
3 

(2
–3

)

56
25

.4
20

16
–

08
-0

8
20

16
–

10
-1

1
20

14
–

09
-1

3
20

14
–

09
-2

0
72

4 
(6

88
–

75
9)

19
99

–
09

-1
1

19
99

–
09

-1
2

72
4 

(6
88

–
75

9)
20

16
–

06
-2

9
20

16
–

06
-

30

72
 (3

9–
10

4)
20

16
–

06
-3

0
20

16
–

07
-

15

64
 (2

4–
10

3)
20

14
3 

(2
–3

)

57
2.

7
20

16
–

08
-0

8
20

16
–

10
-2

0
20

16
–

06
-1

3
20

16
–

06
-2

1
89

 (4
8–

12
9)

19
99

–
07

-1
0

19
99

–
07

-1
7

89
 (4

8–
12

9)
20

15
–

06
-2

0
20

15
–

06
-

27

44
8 

(4
08

–
48

8)
20

16
–

06
-3

0
20

16
–

07
-

15

68
 (2

4–
11

2)
19

99
18

 (
17

–1
8)

58
2.

82
20

16
–

08
-0

8
20

17
–

06
-2

4
20

16
–

10
-0

3
20

16
–

10
-1

1
10

0 (0
–2

64
)

20
13

–1
1-

05
20

14
–

02
-0

1
10

0 (0
–2

64
)

20
15

–
06

-2
7

20
15

–
06

-
28

56
8 

(4
07

–
72

8)
20

16
–

09
-2

5
20

16
–

09
-

26

11
2 (0

–2
72

)
19

99
18

 (
17

–1
9)

59
0.

61
20

16
–

08
-1

7
20

17
–

05
-2

3
20

15
–

03
-1

5
20

15
–

03
-1

6
66

0 
(5

20
–

80
0)

19
91

–
08

-0
4

19
91

–
08

-1
3

66
0 

(5
20

–
80

0)
20

15
–

03
-0

8
20

15
–

03
-1

5
66

4 
(5

21
–

80
7)

*
*

*(
*-

*)
20

14
3 

(2
–4

)

60
3.

75
20

16
–

06
-2

1
20

16
–

07
-1

6
20

16
–

09
-2

6
20

16
–

10
-0

3
88

 (7
2–

10
4)

20
14

–
10

-0
6

20
14

–
10

-0
7

88
 (7

2–
10

4)
20

16
–

06
-2

1
20

16
–

06
-

22

12
 (

0–
25

)
20

16
–

10
-0

3
20

16
–

10
-1

1
95

 (7
9–

11
2)

20
14

3 
(2

–3
)

61
17

.7
4

20
16

–
08

-1
7

20
16

–
09

-2
5

19
97

–
04

-1
4

19
97

–
05

-0
9

70
72

 
(7

04
0–

71
04

)

20
14

–
09

-0
4

20
14

–
09

-0
5

73
2 (7

12
–7

52
)

20
16

–
06

-1
3

20
16

–
06

-2
1

81
 (

57
–1

04
)

20
16

–
10

-0
3

20
16

–
10

-1
1

31
 (

8–
55

)
19

86
31

 (
30

–3
1)

62
12

.9
20

16
–

08
-1

7
20

16
–

09
-2

5
19

99
–

07
-2

5
19

99
–

08
-0

2
62

49
 

(6
22

5–
62

72
)

20
14

–
10

-3
0

20
14

–
10

-3
1

67
6 

(6
56

–
69

6)
*

*
*(

*-
*)

*
*

*(
*-

*)
19

99
18

 (
17

–1
8)

929



   Landslides 20 · (2023)   

Original Paper

References

Amatya P, Kirschbaum D, Stanley T, Tanyas H (2021) Landslide mapping 
using object-based image analysis and open source tools. Eng Geol 
282:106000. https:// doi. org/ 10. 1016/j. enggeo. 2021. 106000

Bartels SF, Chen HYH, Wulder MA, White JC (2016) Trends in post-dis-
turbance recovery rates of Canada’s forests following wildfire and 
harvest. For Ecol Manage 361:194–207. https:// doi. org/ 10. 1016/j. 
foreco. 2015. 11. 015

Borghuis AM, Chang K, Lee HY (2007) Comparison between automated 
and manual mapping of typhoon-triggered landslides from SPOT-5 
imagery. Int J Remote Sens 28:1843–1856. https:// doi. org/ 10. 1080/ 
01431 16060 09356 38

Casagli N, Cigna F, Bianchini S et al (2016) Landslide mapping and mon-
itoring by using radar and optical remote sensing: Examples from 
the EC-FP7 project SAFER. Remote Sens Appl Soc Environ 4:92–108. 
https:// doi. org/ 10. 1016/j. rsase. 2016. 07. 001

Catani F, Casagli N, Ermini L et al (2005) Landslide hazard and risk map-
ping at catchment scale in the Arno River basin. Landslides 2:329–342. 
https:// doi. org/ 10. 1007/ s10346- 005- 0021-0

Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibil-
ity estimation by random forests technique: sensitivity and scaling 
issues. Nat Hazards Earth Syst Sci 13:2815–2831. https:// doi. org/ 10. 
5194/ nhess- 13- 2815- 2013

Chander G, Markham BL, Helder DL (2009) Summary of current radio-
metric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 
ALI sensors. Remote Sens Environ 113:893–903. https:// doi. org/ 10. 
1016/j. rse. 2009. 01. 007

Chen L, Mei L, Zeng B et al (2020a) Failure probability assessment of 
landslides triggered by earthquakes and rainfall: a case study in 
Yadong County, Tibet. China Sci Rep 10:16531. https:// doi. org/ 10. 
1038/ s41598- 020- 73727-4

Chen Q, Chen L, Gui L et al (2020b) Assessment of the physical vulnerabil-
ity of buildings affected by slow-moving landslides. Nat Hazards Earth 
Syst Sci 20:2547–2565. https:// doi. org/ 10. 5194/ nhess- 20- 2547- 2020

Chen THK, Prishchepov AV, Fensholt R, Sabel CE (2019) Detecting and 
monitoring long-term landslides in urbanized areas with nighttime 
light data and multi-seasonal Landsat imagery across Taiwan from 
1998 to 2017. Remote Sens Environ 225:317–327. https:// doi. org/ 10. 
1016/j. rse. 2019. 03. 013

Coe JA, Bessette-kirton EK, Geertsema M (2018) Increasing rock-ava-
lanche size and mobility in Glacier Bay National Park and Preserve, 
Alaska detected from 1984 to 2016 Landsat imagery. Landslides 
15:393–407. https:// doi. org/ 10. 1007/ s10346- 017- 0879-7

CRED (2018) Economic losses, poverty & disasters 1998–2017
Crozier MJ (2010) Deciphering the effect of climate change on landslide 

activity: A review. Geomorphology 124:260–267. https:// doi. org/ 10. 
1016/j. geomo rph. 2010. 04. 009

Cruden DM, Varnes DJ (1996) Landslide Types and Processes. Landslides 
Investig Mitigation, Transp Res Board Spec Rep 247, Washingt DC 36–75

De Jong SM, Shen Y, De Vries J et al (2021) Mapping mangrove dynamics 
and colonization patterns at the Suriname coast using historic satel-
lite data and the LandTrendr algorithm. Int J Appl Earth Obs Geoinf 
97:102293. https:// doi. org/ 10. 1016/j. jag. 2020. 102293

Deijns AAJ, Bevington AR, van Zadelhoff F et al (2020) Semi-automated 
detection of landslide timing using harmonic modelling of satellite 
imagery, Buckinghorse River, Canada. Int J Appl Earth Obs Geoinf 
84:101943. https:// doi. org/ 10. 1016/j. jag. 2019. 101943

DeVries B, Huang C, Armston J et al (2020) Rapid and robust monitoring 
of flood events using Sentinel-1 and Landsat data on the Google Earth 
Engine. Remote Sens Environ 240:111664. https:// doi. org/ 10. 1016/j. 
rse. 2020. 111664

Dewitte O, Dille A, Depicker A et al (2021) Constraining landslide timing 
in a data-scarce context: from recent to very old processes in the trop-
ical environment of the North Tanganyika-Kivu Rift region. Landslides 
18:161–177. https:// doi. org/ 10. 1007/ s10346- 020- 01452-0

Di Traglia F, Bartolini S, Artesi E et al (2018) Susceptibility of intrusion-
related landslides at volcanic islands: the Stromboli case study. Land-
slides 15:21–29. https:// doi. org/ 10. 1007/ s10346- 017- 0866-z

Ta
b

le
 2

  
(c

o
n

ti
n

u
ed

)

La
nd

sl
id

e 
in

ve
nt

or
y

SW
A

D
E1

SW
A

D
E2

N
on

-d
et

re
nd

ed
 h

ar
m

on
ic

D
et

re
nd

ed
 h

ar
m

on
ic

La
nd

Tr
en

dr

ID
A

re
a/

 ×
  10

4  
 m

2
P

re
Po

st
P

re
Po

st
A

cc
ur

ac
y 

(m
in

–
m

ax
)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

P
re

Po
st

A
cc

ur
ac

y 
(m

in
–

m
ax

)

Ye
ar

A
cc

ur
ac

y 
(m

in
–

m
ax

)

63
2.

07
20

16
–

08
-1

6
20

16
–

10
-1

1
20

04
–

10
-1

0
20

04
–

10
-1

1
43

56
 

(4
32

7–
43

84
)

19
98

–
05

-2
8

19
98

–
06

-
04

43
56

 
(4

32
7–

43
84

)

*
*

*(
*-

*)
*

*
*(

*-
*)

19
93

24
 (

23
–2

4)

64
2.

63
20

17
–

07
-1

1
20

17
–

08
-2

7
20

13
–

10
-0

3
20

13
–

10
-1

1
13

97
 (

13
69

–
14

24
)

19
86

–
05

-2
7

19
86

–
06

-0
3

13
97

 
(1

36
9–

14
24

)

*
*

*(
*-

*)
*

*
*(

*-
*)

19
96

22
 (

21
–2

2)

65
0.

51
20

17
–

07
-1

0
20

17
–

08
-1

1
19

93
–

07
-1

7
19

93
–

08
-0

2
87

67
 

(8
74

3–
87

91
)

20
13

–
10

-1
9

20
13

–
10

-2
0

13
76

 (
13

59
–

13
92

)
20

15
–

03
-0

8
20

15
–

03
-1

5
86

8 
(8

48
–

88
7)

20
17

–
03

-0
5

20
17

–
03

-1
3

13
9 (1

19
–1

59
)

20
14

4 
(3

–4
)

66
11

.3
1

19
93

–
08

-1
8

19
93

–
09

-0
3

19
94

–
03

-2
1

19
94

–
03

-3
0

21
1 

(1
99

–
22

4)
20

14
–

09
-1

2
20

14
–

09
-1

3
21

1 
(1

99
–

22
4)

*
*

*(
*-

*)
19

94
–

05
-0

8
19

94
–

05
-1

7
25

9 
(2

47
–

27
2)

20
14

21
 (

21
–2

2)

*N
o 

av
ai

la
bl

e 
da

ta

930

https://doi.org/10.1016/j.enggeo.2021.106000
https://doi.org/10.1016/j.foreco.2015.11.015
https://doi.org/10.1016/j.foreco.2015.11.015
https://doi.org/10.1080/01431160600935638
https://doi.org/10.1080/01431160600935638
https://doi.org/10.1016/j.rsase.2016.07.001
https://doi.org/10.1007/s10346-005-0021-0
https://doi.org/10.5194/nhess-13-2815-2013
https://doi.org/10.5194/nhess-13-2815-2013
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1038/s41598-020-73727-4
https://doi.org/10.1038/s41598-020-73727-4
https://doi.org/10.5194/nhess-20-2547-2020
https://doi.org/10.1016/j.rse.2019.03.013
https://doi.org/10.1016/j.rse.2019.03.013
https://doi.org/10.1007/s10346-017-0879-7
https://doi.org/10.1016/j.geomorph.2010.04.009
https://doi.org/10.1016/j.geomorph.2010.04.009
https://doi.org/10.1016/j.jag.2020.102293
https://doi.org/10.1016/j.jag.2019.101943
https://doi.org/10.1016/j.rse.2020.111664
https://doi.org/10.1016/j.rse.2020.111664
https://doi.org/10.1007/s10346-020-01452-0
https://doi.org/10.1007/s10346-017-0866-z


 Landslides 20 · (2023) 

Dou J, Chang KT, Chen S et al (2015) Automatic case-based reasoning 
approach for landslide detection: Integration of object-oriented 
image analysis and a genetic algorithm. Remote Sens 7:4318–4342. 
https:// doi. org/ 10. 3390/ rs704 04318

Fang Z, Wang Y, Peng L, Hong H (2021) A comparative study of hetero-
geneous ensemble-learning techniques for landslide susceptibility 
mapping. Int J Geogr Inf Sci 35:321–347. https:// doi. org/ 10. 1080/ 
13658 816. 2020. 18088 97

Fell R, Corominas J, Bonnard C et al (2008a) Guidelines for landslide sus-
ceptibility, hazard and risk zoning for land-use planning. Eng Geol 
102:99–111. https:// doi. org/ 10. 1016/j. enggeo. 2008. 03. 014

Fell R, Corominas J, Bonnard C et al (2008b) Guidelines for landslide 
susceptibility, hazard and risk zoning for land use planning. Eng Geol 
102:85–98. https:// doi. org/ 10. 1016/j. enggeo. 2008. 03. 022

Filippelli SK, Falkowski MJ, Hudak AT et al (2020) Monitoring pinyon-
juniper cover and aboveground biomass across the Great Basin. Envi-
ron Res Lett 15:025004. https:// doi. org/ 10. 1088/ 1748- 9326/ ab6785

Foord V (2016) Climate Patterns, Trends, and Projections for the Omineca, 
Skeena, and Northeast Natural Resource Regions, British Columbia

Fu S, Chen L, Woldai T et al (2020) Landslide hazard probability and risk 
assessment at the community level: A case of western Hubei, China. 
Nat Hazards Earth Syst Sci 20:581–601. https:// doi. org/ 10. 5194/ 
nhess- 20- 581- 2020

Geertsema M, Clague JJ, Schwab JW, Evans SG (2006) An overview of 
recent large catastrophic landslides in northern British Columbia, 
Canada. Eng Geol 83:120–143. https:// doi. org/ 10. 1016/j. enggeo. 
2005. 06. 028

Geertsema M, Foord VN (2014) Landslides in the isolated patches per-
mafrost zone, northeastern British Columbia (NTS mapsheet 94G east 
half). Landslide Sci a Safer Geoenvironment Vol 3 Target Landslides 
451–455. https:// doi. org/ 10. 1007/ 978-3- 319- 04996-0_ 69

Geertsema M, Highland L, Vaugeouis L (2009) Environmental impact of 
landslides. Landslides - Disaster Risk Reduct. https:// doi. org/ 10. 1007/ 
978-3- 540- 69970-5_ 31

Geertsema M, Pojar JJ (2007) Influence of landslides on biophysical diver-
sity - A perspective from British Columbia. Geomorphology 89:55–69. 
https:// doi. org/ 10. 1016/j. geomo rph. 2006. 07. 019

Ghorbanzadeh O, Blaschke T, Gholamnia K et al (2019) Evaluation of dif-
ferent machine learning methods and deep-learning convolutional 
neural networks for landslide detection. Remote Sens 11:196. https:// 
doi. org/ 10. 3390/ rs110 20196

Ghorbanzadeh O, Shahabi H, Crivellari A et al (2022) Landslide detec-
tion using deep learning and object-based image analysis. Landslides 
19:929–939. https:// doi. org/ 10. 1007/ s10346- 021- 01843-x

Giannetti F, Pegna R, Francini S et al (2020) A new method for auto-
mated clearcut disturbance detection in mediterranean coppice for-
ests using landsat time series. Remote Sens 12:3720. https:// doi. org/ 
10. 3390/ rs122 23720

Gomez AF (2021) Detecting Artisanal Small-Scale Gold mines with 
LandTrendr multispectral and textural features at the Tapajós river 
basin. University of Twente, Brazil

Gorelick N, Hancher M, Dixon M et al (2017) Google Earth Engine: Plan-
etary-scale geospatial analysis for everyone. Remote Sens Environ 
202:18–27. https:// doi. org/ 10. 1016/j. rse. 2017. 06. 031

Guo Z, Chen L, Yin K et al (2020) Quantitative risk assessment of slow-
moving landslides from the viewpoint of decision-making: A case 
study of the Three Gorges Reservoir in China. Eng Geol 273:105667. 
https:// doi. org/ 10. 1016/j. enggeo. 2020. 105667

Guzzetti F, Mondini AC, Cardinali M et al (2012) Landslide inventory 
maps: New tools for an old problem. Earth-Science Rev 112:42–66. 
https:// doi. org/ 10. 1016/j. earsc irev. 2012. 02. 001

Guzzetti F, Reichenbach P, Cardinali M et al (2005) Probabilistic landslide 
hazard assessment at the basin scale. Geomorphology 72:272–299. 
https:// doi. org/ 10. 1016/j. geomo rph. 2005. 06. 002

Heginbottom JA, Dubreuil MA, Harker PT (1995) National Atlas of Canada 
(5th edition)

Henderson FM, Lewis AJ (1998) Principles and applications of imaging 
radar. Manual of remote sensing (3rd edition). John Wiley and Sons, 
New York

Hermosilla T, Wulder MA, White JC et al (2016) Mass data processing of 
time series Landsat imagery: pixels to data products for forest monitor-
ing. Int J Digit Earth 9:1035–1054. https:// doi. org/ 10. 1080/ 17538 947. 
2016. 11876 73

Hislop S, Haywood A, Jones S et al (2020) A satellite data driven approach 
to monitoring and reporting fire disturbance and recovery across 
boreal and temperate forests. Int J Appl Earth Obs Geoinf 87:102034. 
https:// doi. org/ 10. 1016/j. jag. 2019. 102034

Hislop S, Jones S, Soto-Berelov M et al (2019) A fusion approach to forest 
disturbance mapping using time series ensemble techniques. Remote 
Sens Environ 221:188–197. https:// doi. org/ 10. 1016/j. rse. 2018. 11. 025

Hölbling D, Füreder P, Antolini F et al (2012) A semi-automated object-
based approach for landslide detection validated by persistent scat-
terer interferometry measures and landslide inventories. Remote Sens 
4:1310–1336. https:// doi. org/ 10. 3390/ rs405 1310

Horton P, Jaboyedoff M, Rudaz B, Zimmermann M (2013) Flow-R, a model 
for susceptibility mapping of debris flows and other gravitational haz-
ards at a regional scale. Nat Hazards Earth Syst Sci 13:869–885. https:// 
doi. org/ 10. 5194/ nhess- 13- 869- 2013

Hurtado L, Lizarazo I (2019) Identification of disturbances in the colom-
bian tropical rainforest from landsat satellite image time series using 
the landtrendr algorithm. Rev Teledetec 54:25–39. https:// doi. org/ 10. 
4995/ raet. 2019. 12285

Jia M, Wang Z, Mao D et al (2021) Rapid, robust, and automated mapping 
of tidal flats in China using time series Sentinel-2 images and Google 
Earth Engine. Remote Sens Environ 255:112285. https:// doi. org/ 10. 
1016/j. rse. 2021. 112285

Kennedy RE, Cohen WB, Schroeder TA (2007) Trajectory-based change 
detection for automated characterization of forest disturbance 
dynamics. Remote Sens Environ 110:370–386. https:// doi. org/ 10. 
1016/j. rse. 2007. 03. 010

Kennedy RE, Yang Z, Gorelick N et al (2018) Implementation of the 
LandTrendr algorithm on Google Earth Engine. Remote Sens 10:691. 
https:// doi. org/ 10. 3390/ rs100 50691

Keogh E, Chu S, Hart D, Pazzani M (2001) An online algorithm for seg-
menting time series. Proc - IEEE Int Conf Data Mining, ICDM. https:// 
doi. org/ 10. 1109/ icdm. 2001. 989531

Kolecka N (2021) Greening trends and their relationship with agricultural 
land abandonment across Poland. Remote Sens Environ 257:112340. 
https:// doi. org/ 10. 1016/j. rse. 2021. 112340

Komba AW, Watanabe T, Kaneko M, Chand MB (2021) Monitoring of 
vegetation disturbance around protected areas in central tanzania 
using landsat time-series data. Remote Sens 13:1800. https:// doi. org/ 
10. 3390/ rs130 91800

Korup O, Seidemann J, Mohr CH (2019) Increased landslide activity on 
forested hillslopes following two recent volcanic eruptions in Chile. 
Nat Geosci 12:284–289. https:// doi. org/ 10. 1038/ s41561- 019- 0315-9

Lambert JDH (1972) Plant Succession on Tundra Mudflows: Preliminary 
Observations. Arctic 25:99–106. https:// doi. org/ 10. 14430/ arcti c2949

Lane LS, Cecile MP, Currie LD, Stockmal GS (1999) Summary of 1998 field-
work in Trutch and Toad River map areas, Central Forelands NATMAP 
Project, northeastern British Columbia

Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by 
hillslope material. Nat Geosci 3:247–251. https:// doi. org/ 10. 1038/ ngeo7 76

Lee GR, Gommers R, Waselewski F et al (2019) PyWavelets: A Python 
package for wavelet analysis. J Open Source Softw 4:1237. https:// 
doi. org/ 10. 7717/ peerj. 453

Li Y, Chen L, Yin K et al (2021) Quantitative risk analysis of the hazard 
chain triggered by a landslide and the generated tsunami in the Three 
Gorges Reservoir area. Landslides 18:667–680. https:// doi. org/ 10. 
1007/ s10346- 020- 01516-1

Liang X, Segoni S, Yin K et al (2022) Characteristics of landslides and 
debris flows triggered by extreme rainfall in Daoshi Town during the 
2019 Typhoon Lekima, Zhejiang Province, China. Landslides 19:1735–
1749. https:// doi. org/ 10. 1007/ s10346- 022- 01889-5

Long X, Li X, Lin H, Zhang M (2021) Mapping the vegetation distribution 
and dynamics of a wetland using adaptive-stacking and Google Earth 
Engine based on multi-source remote sensing data. Int J Appl Earth 
Obs Geoinf 102:102453. https:// doi. org/ 10. 1016/j. jag. 2021. 102453

931

https://doi.org/10.3390/rs70404318
https://doi.org/10.1080/13658816.2020.1808897
https://doi.org/10.1080/13658816.2020.1808897
https://doi.org/10.1016/j.enggeo.2008.03.014
https://doi.org/10.1016/j.enggeo.2008.03.022
https://doi.org/10.1088/1748-9326/ab6785
https://doi.org/10.5194/nhess-20-581-2020
https://doi.org/10.5194/nhess-20-581-2020
https://doi.org/10.1016/j.enggeo.2005.06.028
https://doi.org/10.1016/j.enggeo.2005.06.028
https://doi.org/10.1007/978-3-319-04996-0_69
https://doi.org/10.1007/978-3-540-69970-5_31
https://doi.org/10.1007/978-3-540-69970-5_31
https://doi.org/10.1016/j.geomorph.2006.07.019
https://doi.org/10.3390/rs11020196
https://doi.org/10.3390/rs11020196
https://doi.org/10.1007/s10346-021-01843-x
https://doi.org/10.3390/rs12223720
https://doi.org/10.3390/rs12223720
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.enggeo.2020.105667
https://doi.org/10.1016/j.earscirev.2012.02.001
https://doi.org/10.1016/j.geomorph.2005.06.002
https://doi.org/10.1080/17538947.2016.1187673
https://doi.org/10.1080/17538947.2016.1187673
https://doi.org/10.1016/j.jag.2019.102034
https://doi.org/10.1016/j.rse.2018.11.025
https://doi.org/10.3390/rs4051310
https://doi.org/10.5194/nhess-13-869-2013
https://doi.org/10.5194/nhess-13-869-2013
https://doi.org/10.4995/raet.2019.12285
https://doi.org/10.4995/raet.2019.12285
https://doi.org/10.1016/j.rse.2021.112285
https://doi.org/10.1016/j.rse.2021.112285
https://doi.org/10.1016/j.rse.2007.03.010
https://doi.org/10.1016/j.rse.2007.03.010
https://doi.org/10.3390/rs10050691
https://doi.org/10.1109/icdm.2001.989531
https://doi.org/10.1109/icdm.2001.989531
https://doi.org/10.1016/j.rse.2021.112340
https://doi.org/10.3390/rs13091800
https://doi.org/10.3390/rs13091800
https://doi.org/10.1038/s41561-019-0315-9
https://doi.org/10.14430/arctic2949
https://doi.org/10.1038/ngeo776
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1007/s10346-020-01516-1
https://doi.org/10.1007/s10346-020-01516-1
https://doi.org/10.1007/s10346-022-01889-5
https://doi.org/10.1016/j.jag.2021.102453


   Landslides 20 · (2023)   

Original Paper

Marshak A, Knyazikhin Y, Davis AB et al (2000) Cloud-vegetation interac-
tion: Use of normalized difference cloud index for estimation of cloud 
optical thickness. Geophys Res Lett 27:1695–1698

Martha TR, Kerle N, Jetten V et al (2010) Characterising spectral, spatial 
and morphometric properties of landslides for semi-automatic detec-
tion using object-oriented methods. Geomorphology 116:24–36. 
https:// doi. org/ 10. 1016/j. geomo rph. 2009. 10. 004

Matsala M, Bilous A, Myroniuk V et al (2021) The return of nature to the 
chernobyl exclusion zone: Increases in forest cover of 1.5 times since 
the 1986 disaster. Forests 12:1024. https:// doi. org/ 10. 3390/ f1208 1024

Meroni M, Fasbender D, Rembold F et al (2019) Near real-time vegeta-
tion anomaly detection with MODIS NDVI: Timeliness vs. accuracy 
and effect of anomaly computation options. Remote Sens Environ 
221:508–521. https:// doi. org/ 10. 1016/j. rse. 2018. 11. 041

Mugiraneza T, Nascetti A, Ban Y (2020) Continuous monitoring of 
urban land cover change trajectories with landsat time series and 
landtrendr-google earth engine cloud computing. Remote Sens 
12:2883. https:// doi. org/ 10. 3390/ RS121 82883

Ni H, Gong P, Li X (2021) Extraction of old towns in Hangzhou (2000–
2018) from landsat time series image stacks. Remote Sens 13:2438. 
https:// doi. org/ 10. 3390/ rs131 32438

Nichol J, Wong MS (2005) Satellite remote sensing for detailed landslide 
inventories using change detection and image fusion. Int J Remote 
Sens 26:1913–1926. https:// doi. org/ 10. 1080/ 01431 16051 23313 14047

Pflugmacher D, Cohen WB, Kennedy RE, Yang Z (2014) Using Landsat-
derived disturbance and recovery history and lidar to map forest bio-
mass dynamics. Remote Sens Environ 151:124–137. https:// doi. org/ 
10. 1016/j. rse. 2013. 05. 033

Powers M (2021) Rebecca Naeko Weber for the degree of Master of Sci-
ence in Sustainable. Oregon State University

Qi W, Wei M, Yang W et al (2020) Automatic mapping of landslides by the 
ResU-Net. Remote Sens 12:2487. https:// doi. org/ 10. 3390/ RS121 52487

Reiche J, Hamunyela E, Verbesselt J et al (2018) Improving near-real time 
deforestation monitoring in tropical dry forests by combining dense 
Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote 
Sens Environ 204:147–161. https:// doi. org/ 10. 1016/j. rse. 2017. 10. 034

Rivest RL (1987) Learning Decision Lists. Mach Learn 2:229–246. https:// 
doi. org/ 10. 1023/A: 10226 07331 053

Rodman KC, Andrus RA, Veblen TT, Hart SJ (2021) Disturbance detec-
tion in landsat time series is influenced by tree mortality agent and 
severity, not by prior disturbance. Remote Sens Environ 254:112244. 
https:// doi. org/ 10. 1016/j. rse. 2020. 112244

Runge A, Nitze I, Grosse G (2022) Remote sensing annual dynamics of 
rapid permafrost thaw disturbances with LandTrendr. Remote Sens 
Environ 268:112752. https:// doi. org/ 10. 1016/j. rse. 2021. 112752

Sassa K, Tsuchiya S, Fukuoka H et al (2015) Landslides: review of achieve-
ments in the second 5-year period (2009–2013). Landslides 12:213–
223. https:// doi. org/ 10. 1007/ s10346- 015- 0567-4

Sassa K, Tsuchiya S, Ugai K et al (2009) Landslides: a review of achieve-
ments in the first 5 years (2004–2009). Landslides 6:275–286. https:// 
doi. org/ 10. 1007/ s10346- 009- 0172-5

Senf C, Seidl R (2021) Mapping the forest disturbance regimes of Europe. 
Nat Sustain 4:63–70. https:// doi. org/ 10. 1038/ s41893- 020- 00609-y

Smith RB, Commandeur PR, Ryan MW (1986) Soils, vegetation, and forest 
growth on landslides and surrounding logged and old-growth areas 
on the Queen Charlotte Islands

Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using 
Random Forests. Remote Sens Environ 115:2564–2577. https:// doi. 
org/ 10. 1016/j. rse. 2011. 05. 013

Tian J, Wang L, Yin D et al (2020) Development of spectral-phenological fea-
tures for deep learning to understand Spartina alterniflora invasion. Remote 
Sens Environ 242:111745. https:// doi. org/ 10. 1016/j. rse. 2020. 111745

Tucker CJ (1979) Red and photographic infrared linear combinations for 
monitoring vegetation. Remote Sens Environ 8:127–150. https:// doi. 
org/ 10. 1016/ 0034- 4257(79) 90013-0

Wadhawan SK (2019) Landslide Susceptibility Mapping, Vulnerability and 
Risk Assessment for Development of Early Warning Systems in India. 
In: Pradhan SP, Vishal V, Singh TN (eds) Landslides: Theory, Practice 
and Modelling. Springer International Publishing, Cham, pp 145–172

Wang X, Liu L, Zhao L et al (2017) Mapping and inventorying active 
rock glaciers in the northern Tien Shan of China using satellite SAR 
interferometry. Cryosphere 11:997–1014. https:// doi. org/ 10. 5194/ 
tc- 11- 997- 2017

Wu Q (2020) geemap: A Python package for interactive mapping with 
Google Earth Engine. J Open Source Softw 5:2305. https:// doi. org/ 
10. 21105/ joss. 02305

Xiao L, Wang J, Zhu Y, Zhang J (2020a) Quantitative Risk Analysis of 
a Rainfall-Induced Complex Landslide in Wanzhou County, Three 
Gorges Reservoir, China. Int J Disaster Risk Sci 11:347–363. https:// 
doi. org/ 10. 1007/ s13753- 020- 00257-y

Xiao W, Deng X, He T, Chen W (2020b) Mapping annual land disturbance 
and reclamation in a surface coal mining region using google earth 
engine and the landtrendr algorithm: A case study of the shengli coal-
field in Inner Mongolia. China Remote Sens 12:1612. https:// doi. org/ 
10. 3390/ rs121 01612

Xu H, Wei Y, Liu C et al (2019) A scheme for the long-term monitoring of 
impervious-relevant land disturbances using high frequency Landsat 
archives and the Google Earth Engine. Remote Sens 11:1891. https:// 
doi. org/ 10. 3390/ rs111 61891

Yang B, Yin K, Lacasse S, Liu Z (2019) Time series analysis and long short-
term memory neural network to predict landslide displacement. Land-
slides 16:677–694. https:// doi. org/ 10. 1007/ s10346- 018- 01127-x

Yang Y, Erskine PD, Lechner AM et al (2018) Detecting the dynamics of 
vegetation disturbance and recovery in surface mining area via Land-
sat imagery and LandTrendr algorithm. J Clean Prod 178:353–362. 
https:// doi. org/ 10. 1016/j. jclep ro. 2018. 01. 050

Ye C, Li Y, Cui P et al (2019) Landslide Detection of Hyperspectral Remote 
Sensing Data Based on Deep Learning With Constrains. IEEE J Sel Top 
Appl Earth Obs Remote Sens 12:5047–5060. https:// doi. org/ 10. 1109/ 
JSTARS. 2019. 29517 25

Zhong C, Liu Y, Gao P et al (2020) Landslide mapping with remote sens-
ing: challenges and opportunities. Int J Remote Sens 41:1555–1581. 
https:// doi. org/ 10. 1080/ 01431 161. 2019. 16729 04

Zhou B, Okin GS, Zhang J (2020) Leveraging Google Earth Engine (GEE) 
and machine learning algorithms to incorporate in situ measurement 
from different times for rangelands monitoring. Remote Sens Environ 
236:111521. https:// doi. org/ 10. 1016/j. rse. 2019. 111521

Sheng Fu (*) · Steven M. de Jong · Tjalling de Haas 
Department of Physical Geography, Utrecht University, Princetonlaan 
8a, 3584 CB Utrecht, Netherlands 
Email: s.fu@uu.nl

Axel Deijns 
Department of Earth Sciences, Royal Museum for Central Africa, 
3080 Tervuren, Belgium

Axel Deijns 
Department of Hydrology and Hydraulic Engineering, Earth System 
Science, Vrije Universiteit Brussel, 6 1050 Elsene, Belgium

Marten Geertsema 
British Columbia Ministry of Forests, Lands, Natural Resource 
Operations and Rural Development, 5th Floor, 499 George Street, 
Prince George V2L 1R5, Canada

932

https://doi.org/10.1016/j.geomorph.2009.10.004
https://doi.org/10.3390/f12081024
https://doi.org/10.1016/j.rse.2018.11.041
https://doi.org/10.3390/RS12182883
https://doi.org/10.3390/rs13132438
https://doi.org/10.1080/01431160512331314047
https://doi.org/10.1016/j.rse.2013.05.033
https://doi.org/10.1016/j.rse.2013.05.033
https://doi.org/10.3390/RS12152487
https://doi.org/10.1016/j.rse.2017.10.034
https://doi.org/10.1023/A:1022607331053
https://doi.org/10.1023/A:1022607331053
https://doi.org/10.1016/j.rse.2020.112244
https://doi.org/10.1016/j.rse.2021.112752
https://doi.org/10.1007/s10346-015-0567-4
https://doi.org/10.1007/s10346-009-0172-5
https://doi.org/10.1007/s10346-009-0172-5
https://doi.org/10.1038/s41893-020-00609-y
https://doi.org/10.1016/j.rse.2011.05.013
https://doi.org/10.1016/j.rse.2011.05.013
https://doi.org/10.1016/j.rse.2020.111745
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.5194/tc-11-997-2017
https://doi.org/10.5194/tc-11-997-2017
https://doi.org/10.21105/joss.02305
https://doi.org/10.21105/joss.02305
https://doi.org/10.1007/s13753-020-00257-y
https://doi.org/10.1007/s13753-020-00257-y
https://doi.org/10.3390/rs12101612
https://doi.org/10.3390/rs12101612
https://doi.org/10.3390/rs11161891
https://doi.org/10.3390/rs11161891
https://doi.org/10.1007/s10346-018-01127-x
https://doi.org/10.1016/j.jclepro.2018.01.050
https://doi.org/10.1109/JSTARS.2019.2951725
https://doi.org/10.1109/JSTARS.2019.2951725
https://doi.org/10.1080/01431161.2019.1672904
https://doi.org/10.1016/j.rse.2019.111521

	Sheng Fu  · Steven M. de Jong · Axel Deijns · Marten Geertsema · Tjalling de Haas The SWADE model for landslide dating in time series of optical satellite imagery
	Abstract 
	Introduction
	Buckinghorse River landslide database
	Methodology
	SWADE: Segmented WAvelet-DEnoising and stepwise linear fitting
	Preprocessing
	Denoising method
	Segmentation of the time series

	Harmonic modelling
	LandTrendr
	Quantification of landslide dating precisions

	Results
	Accuracy of the landslide dating approaches
	Effect of landslide area on dating accuracy
	Effect of landslide occurrence year on dating accuracy
	Detailed examples of landslide dating with SWADE

	Discussion
	Applicability of SWADE beyond Buckinghorse River area
	Factors affecting dating accuracy

	Conclusions
	Acknowledgements 
	References




