1,094 research outputs found

    Quantum Encodings in Spin Systems and Harmonic Oscillators

    Full text link
    We show that higher-dimensional versions of qubits, or qudits, can be encoded into spin systems and into harmonic oscillators, yielding important advantages for quantum computation. Whereas qubit-based quantum computation is adequate for analyses of quantum vs classical computation, in practice qubits are often realized in higher-dimensional systems by truncating all but two levels, thereby reducing the size of the precious Hilbert space. We develop natural qudit gates for universal quantum computation, and exploit the entire accessible Hilbert space. Mathematically, we give representations of the generalized Pauli group for qudits in coupled spin systems and harmonic oscillators, and include analyses of the qubit and the infinite-dimensional limits.Comment: 4 pages, published versio

    André BEAULIEU et Jean HAMELIN, La presse québécoise des origines à nos jours

    Get PDF

    Comment mesurer les progrès de la lecture?

    Get PDF

    Inequivalent classes of closed three-level systems

    Full text link
    We show here that the Λ\Lambda and V configurations of three-level atomic systems, while they have recently been shown to be equivalent for many important physical quantities when driven with classical fields [M. B. Plenio, Phys. Rev. A \textbf{62}, 015802 (2000)], are no longer equivalent when coupled via a quantum field. We analyze the physical origin of such behavior and show how the equivalence between these two configurations emerges in the semiclassical limit.Comment: 4 pages, 1 figure. To appear as Brief Report in Physical Review
    • …
    corecore