11,995 research outputs found
A Physical Realization of the Generalized PT-, C-, and CPT-Symmetries and the Position Operator for Klein-Gordon Fields
Generalized parity (P), time-reversal (T), and charge-conjugation
(C)operators were initially definedin the study of the pseudo-Hermitian
Hamiltonians. We construct a concrete realization of these operators for
Klein-Gordon fields and show that in this realization PT and C operators
respectively correspond to the ordinary time-reversal and charge-grading
operations. Furthermore, we present a complete description of the quantum
mechanics of Klein-Gordon fields that is based on the construction of a Hilbert
space with a relativistically invariant, positive-definite, and conserved inner
product. In particular we offer a natural construction of a position operator
and the corresponding localized and coherent states. The restriction of this
position operator to the positive-frequency fields coincides with the
Newton-Wigner operator. Our approach does not rely on the conventional
restriction to positive-frequency fields. Yet it provides a consistent quantum
mechanical description of Klein-Gordon fields with a genuine probabilistic
interpretation.Comment: 20 pages, published versio
A pattern-recognition theory of search in expert problem solving
Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data
Improved drive current in RF vertical MOSFETS using hydrogen anneal
This letter reports a study on the effect of a hydrogen anneal after silicon pillar etch of surround-gate vertical MOSFETs intended for RF applications. A hydrogen anneal at 800 ?C is shown to give a 30% improvement in the drive current of 120-nm n-channel transistors compared with transistors without the hydrogen anneal. The value of drive current achieved is 250 ?A/?m, which is a record for thick pillar vertical MOSFETs. This improved performance is obtained even though a sacrificial oxidation was performed prior to the hydrogen anneal to smooth the pillar sidewall. The values of subthreshold slope and DIBL are 79 mV/decade and 45 mV/V, respectively, which are significantly better than most values reported in the literature for comparable devices. The H2 anneal is also shown to decrease the OFF-state leakage current by a factor of three
Assessing Human Error Against a Benchmark of Perfection
An increasing number of domains are providing us with detailed trace data on
human decisions in settings where we can evaluate the quality of these
decisions via an algorithm. Motivated by this development, an emerging line of
work has begun to consider whether we can characterize and predict the kinds of
decisions where people are likely to make errors.
To investigate what a general framework for human error prediction might look
like, we focus on a model system with a rich history in the behavioral
sciences: the decisions made by chess players as they select moves in a game.
We carry out our analysis at a large scale, employing datasets with several
million recorded games, and using chess tablebases to acquire a form of ground
truth for a subset of chess positions that have been completely solved by
computers but remain challenging even for the best players in the world.
We organize our analysis around three categories of features that we argue
are present in most settings where the analysis of human error is applicable:
the skill of the decision-maker, the time available to make the decision, and
the inherent difficulty of the decision. We identify rich structure in all
three of these categories of features, and find strong evidence that in our
domain, features describing the inherent difficulty of an instance are
significantly more powerful than features based on skill or time.Comment: KDD 2016; 10 page
Momentum of an electromagnetic wave in dielectric media
Almost a hundred years ago, two different expressions were proposed for the
energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's
tensor predicted an increase in the linear momentum of the wave on entering a
dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical
arguments were advanced in favour of both sides, and experiments proved
incapable of distinguishing between the two. Yet more forms were proposed, each
with their advocates who considered the form that they were proposing to be the
one true tensor. This paper reviews the debate and its eventual conclusion:
that no electromagnetic wave energy--momentum tensor is complete on its own.
When the appropriate accompanying energy--momentum tensor for the material
medium is also considered, experimental predictions of all the various proposed
tensors will always be the same, and the preferred form is therefore
effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0
from Eq.(44
Energy conservation for dynamical black holes
An energy conservation law is described, expressing the increase in
mass-energy of a general black hole in terms of the energy densities of the
infalling matter and gravitational radiation. For a growing black hole, this
first law of black-hole dynamics is equivalent to an equation of Ashtekar &
Krishnan, but the new integral and differential forms are regular in the limit
where the black hole ceases to grow. An effective gravitational-radiation
energy tensor is obtained, providing measures of both ingoing and outgoing,
transverse and longitudinal gravitational radiation on and near a black hole.
Corresponding energy-tensor forms of the first law involve a preferred time
vector which plays the role for dynamical black holes which the stationary
Killing vector plays for stationary black holes. Identifying an energy flux,
vanishing if and only if the horizon is null, allows a division into
energy-supply and work terms, as in the first law of thermodynamics. The energy
supply can be expressed in terms of area increase and a newly defined surface
gravity, yielding a Gibbs-like equation, with a similar form to the so-called
first law for stationary black holes.Comment: 4 revtex4 pages. Many (mostly presentational) changes; emphasizes the
definition of gravitational radiation in the strong-field regim
Expert chess memory: Revisiting the chunking hypothesis
After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory
Mapping the Wigner distribution function of the Morse oscillator into a semi-classical distribution function
The mapping of the Wigner distribution function (WDF) for a given bound-state
onto a semiclassical distribution function (SDF) satisfying the Liouville
equation introduced previously by us is applied to the ground state of the
Morse oscillator. Here we give results showing that the SDF gets closer to the
corresponding WDF as the number of levels of the Morse oscillator increases. We
find that for a Morse oscillator with one level only, the agreement between the
WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it
becomes satisfactory.Comment: Revtex, 27 pages including 13 eps figure
Self-aligned silicidation of surround gate vertical MOSFETs for low cost RF applications
We report for the first time a CMOS-compatible silicidation technology for surround-gate vertical MOSFETs. The technology uses a double spacer comprising a polysilicon spacer for the surround gate and a nitride spacer for silicidation and is successfully integrated with a Fillet Local OXidation (FILOX) process, which thereby delivers low overlap capacitance and high drive-current vertical devices. Silicided 80-nm vertical n-channel devices fabricated using 0.5-?m lithography are compared with nonsilicided devices. A source–drain (S/D) activation anneal of 30 s at 1100 ?C is shown to deliver a channel length of 80 nm, and the silicidation gives a 60% improvement in drive current in comparison with nonsilicided devices. The silicided devices exhibit a subthreshold slope (S) of 87 mV/dec and a drain-induced barrier lowering (DIBL) of 80 mV/V, compared with 86 mV/dec and 60 mV/V for nonsilicided devices. S-parameter measurements on the 80-nm vertical nMOS devices give an fT of 20 GHz, which is approximately two times higher than expected for comparable lateral MOSFETs fabricated using the same 0.5-?m lithography. Issues associated with silicidation down the pillar sidewall are investigated by reducing the activation anneal time to bring the silicided region closer to the p-n junction at the top of the pillar. In this situation, nonlinear transistor turn-on is observed in drain-on-top operation and dramatically degraded drive current in source-on-top operation. This behavior is interpreted using mixed-mode simulations, which show that a Schottky contact is formed around the perimeter of the pillar when the silicided contact penetrates too close to the top S/D junction down the side of the pillar
- …