10,907 research outputs found

    Half-metallic ferromagnets: From band structure to many-body effects

    Get PDF
    A review of new developments in theoretical and experimental electronic structure investigations of half-metallic ferromagnets (HMF) is presented. Being semiconductors for one spin projection and metals for another ones, these substances are promising magnetic materials for applications in spintronics (i.e., spin-dependent electronics). Classification of HMF by the peculiarities of their electronic structure and chemical bonding is discussed. Effects of electron-magnon interaction in HMF and their manifestations in magnetic, spectral, thermodynamic, and transport properties are considered. Especial attention is paid to appearance of non-quasiparticle states in the energy gap, which provide an instructive example of essentially many-body features in the electronic structure. State-of-art electronic calculations for correlated dd-systems is discussed, and results for specific HMF (Heusler alloys, zinc-blende structure compounds, CrO2,_{2}, Fe3_{3}O4_{4}) are reviewed.Comment: to be published in Reviews of Modern Physics, vol 80, issue

    De praktijk van Vliegende Brigades: doelen, werkprocessen en opbrengsten

    Get PDF

    Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    Full text link
    We report on the direct observation of spin-exchanging interactions in a two-orbital SU(N)-symmetric quantum gas of ytterbium in an optical lattice. The two orbital states are represented by two different (meta-)stable electronic configurations of fermionic Yb-173. A strong spin-exchange between particles in the two separate orbitals is mediated by the contact interaction between atoms, which we characterize by clock shift spectroscopy in a 3D optical lattice. We find the system to be SU(N)-symmetric within our measurement precision and characterize all relevant scattering channels for atom pairs in combinations of the ground and the excited state. Elastic scattering between the orbitals is dominated by the antisymmetric channel, which leads to the strong spin-exchange coupling. The exchange process is directly observed, by characterizing the dynamic equilibration of spin imbalances between two large ensembles in the two orbital states, as well as indirectly in atom pairs via interaction shift spectroscopy in a 3D lattice. The realization of a stable SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route towards experimental quantum simulation of condensed-matter models based on orbital interactions, such as the Kondo lattice model.Comment: Correction: In the original version of this preprint the assignment of states with symmetric electronic wavefunction (|eg+>) and with antisymmetric electronic wavefunction (|eg->) to the observed spectral lines was inverted. This has been corrected in the current version. The results of the paper remain unchanged, with the exchange coupling being inverted to a ferromagnetic exchang

    Hard thermal loops with a background plasma velocity

    Get PDF
    I consider the calculation of the two and three-point functions for QED at finite temperature in the presence of a background plasma velocity. The final expressions are consistent with Lorentz invariance, gauge invariance and current conservation, pointing to a straightforward generalization of the hard thermal loop formalism to this physical situation. I also give the resulting expression for the effective action and identify the various terms.Comment: 11 pages, no figure

    Efficiency at maximum power of thermally coupled heat engines

    Full text link
    We study the efficiency at maximum power of two coupled heat engines, using thermoelectric generators (TEGs) as engines. Assuming that the heat and electric charge fluxes in the TEGs are strongly coupled, we simulate numerically the dependence of the behavior of the global system on the electrical load resistance of each generator in order to obtain the working condition that permits maximization of the output power. It turns out that this condition is not unique. We derive a simple analytic expression giving the relation between the electrical load resistance of each generator permitting output power maximization. We then focuse on the efficiency at maximum power (EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may not always be recovered: the EMP varies with the specific working conditions of each generator but remains in the range predicted by irreversible thermodynamics theory. We finally discuss our results in light of non-ideal Carnot engine behavior.Comment: 11 pages, 7 figure

    Value orientations and environmental beliefs in five countries - Validity of an instrument to measure egoistic, altruistic and biospheric value orientations

    Get PDF
    Various scholars argue that egoistic, altruistic, and biospheric value orientations are important for understanding environmental beliefs and behavior. However, little empirical evidence has been provided for the distinction between altruistic and biospheric values. This study examines whether this distinction is valid across different countries (i.e., Austria, Czech Republic, Italy, the Netherlands, and Sweden) by using a new value instrument. Relationships between these value orientations and behavior-specific beliefs (i.e., awareness of environmental consequences and personal norms) are investigated to further examine the validity of the value instrument. Results provide support for the generalization of the three-way distinction. Furthermore, value orientations were related to behavior-specific beliefs in all countries. The authors conclude that the distinction between the three value orientations is valid and useful for examining environmentally relevant behavior.</p
    corecore