7,850 research outputs found

    SMAUG: a new technique for the deprojection of galaxy clusters

    Full text link
    This paper presents a new technique for reconstructing the spatial distributions of hydrogen, temperature and metal abundance of a galaxy cluster. These quantities are worked out from the X-ray spectrum, modeled starting from few analytical functions describing their spatial distributions. These functions depend upon some parameters, determined by fitting the model to the observed spectrum. We have implemented this technique as a new model in the XSPEC software analysis package. We describe the details of the method, and apply it to work out the structure of the cluster A1795. We combine the observation of three satellites, exploiting the high spatial resolution of Chandra for the cluster core, the wide collecting area of XMM-Newton for the intermediate regions and the large field of view of Beppo-SAX for the outer regions. We also test the validity and precision of our method by i) comparing its results with those from a geometrical deprojection, ii) examining the spectral residuals at different radii of the cluster and iii) reprojecting the unfolded profiles and comparing them directly to the measured quantities. Our analytical method yields the parameters defining the spatial functions directly from the spectra. Their explicit knowledge allows a straightforward derivation of other indirect physical quantities like the gravitating mass, as well as a fast and easy estimate of the profiles uncertainties.Comment: 24 pages, 11 figures, 3 tables; emulateapj; accepted for publication in the Astrophysical Journa

    Radiative cooling, heating and thermal conduction in M87

    Full text link
    The crisis of the standard cooling flow model brought about by Chandra and XMM-Newton observations of galaxy clusters, has led to the development of several models which explore different heating processes in order to assess if they can quench the cooling flow. Among the most appealing mechanisms are thermal conduction and heating through buoyant gas deposited in the ICM by AGNs. We combine Virgo/M87 observations of three satellites (Chandra, XMM-Newton and Beppo-SAX) to inspect the dynamics of the ICM in the center of the cluster. Using the spectral deprojection technique, we derive the physical quantities describing the ICM and determine the extra-heating needed to balance the cooling flow assuming that thermal conduction operates at a fixed fraction of the Spitzer value. We assume that the extra-heating is due to buoyant gas and we fit the data using the model developed by Ruszkowski and Begelman (2002). We derive a scale radius for the model of 5\sim 5 kpc, which is comparable with the M87 AGN jet extension, and a required luminosity of the AGN of a few×1042few \times 10^{42} erg s1^{-1}, which is comparable to the observed AGN luminosity. We discuss a scenario where the buoyant bubbles are filled of relativistic particles and magnetic field responsible for the radio emission in M87. The AGN is supposed to be intermittent and to inject populations of buoyant bubbles through a succession of outbursts. We also study the X-ray cool component detected in the radio lobes and suggest that it is structured in blobs which are tied to the radio buoyant bubbles.Comment: 25 pages, 10 figures and 2 tables. Accepted for publication in Ap

    A Chandra archival study of the temperature and metal abundance profiles in hot Galaxy Clusters at 0.1 < z < 0.3

    Get PDF
    We present the analysis of the temperature and metallicity profiles of 12 galaxy clusters in the redshift range 0.1--0.3 selected from the Chandra archive with at least ~20,000 net ACIS counts and kT>6 keV. We divide the sample between 7 Cooling-Core (CC) and 5 Non-Cooling-Core (NCC) clusters according to their central cooling time. We find that single power-laws can describe properly both the temperature and metallicity profiles at radii larger than 0.1 r_180 in both CC and NCC systems, showing the NCC objects steeper profiles outwards. A significant deviation is only present in the inner 0.1 r_180. We perform a comparison of our sample with the De Grandi & Molendi BeppoSAX sample of local CC and NCC clusters, finding a complete agreement in the CC cluster profile and a marginally higher value (at ~1sigma) in the inner regions of the NCC clusters. The slope of the power-law describing kT(r) within 0.1 r_180 correlates strongly with the ratio between the cooling time and the age of the Universe at the cluster redshift, being the slope >0 and tau_c/tau_age<=0.6 in CC systems.Comment: 12 pages, 6 figures, Accepted for publication by the Astrophysical Journa

    Semiclassical Spectrum of Small Bose-Hubbard Chains: A Normal Form Approach

    Full text link
    We analyze the spectrum of the 3-site Bose-Hubbard model with periodic boundary conditions using a semiclassical method. The Bohr-Sommerfeld quantization is applied to an effective classical Hamiltonian which we derive using resonance normal form theory. The derivation takes into account the 1:1 resonance between frequencies of a linearized classical system, and brings nonlinear terms into a corresponding normal form. The obtained expressions reproduce the exact low-energy spectrum of the system remarkably well even for a small number of particles N corresponding to fillings of just two particles per site. Such small fillings are often used in current experiments, and it is inspiring to get insight into this quantum regime using essentially classical calculations.Comment: Minor corrections to the coefficients of the effective Hamiltonian in Eqs 14,15,18,19. Figs 1,2 are slightly modified, correspondingl

    Where does the gas fueling star formation in BCGs originate?

    Get PDF
    We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium (ICM). We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.Comment: to appear in A&

    Ultrastructural localization of intracellular antigen using enzyme-labeled antibody fragments

    Get PDF
    The efficiency of small enzyme-labeled tracers for the demonstration of intracellular antigen was investigated in tissues fixed with picric acid-formaldehyde. The influence of fixation on the immunological activity was tested in vitro by radial immunodiffusion. The experimental model consisted of newborn pig jejunum after absorption of ferritin from the intestinal lumen. Ferritin was located after 1 hr in vacuoles scattered in the cytoplasm of the absorptive cells and represented an easily recognizable intracellular antigen. After immunohistochemical treatments with antiferritin preparations, the distribution of labeling enzyme reaction product was examined by morphometry. The ratio of the labeled volume to the total volume of vacuoles containing ferritin indicated the degree of specific labeling of the antigen. In both direct and indirect methods, the degree of labeling was low when enzyme-labeled immunoglobulin G was the tracer. With antigen binding fragments (Fab), the labeling was significantly increased. In the indirect method, the degree of labeling was influenced by the first-step reagents. Onlywhen the serum titer was optimum was a high degree of labeling obtained. With antigen binding fragments or papain-digested serum the effect of the titer was negligible and maximum labeling was achieved. In both methods, with peroxidase as the labeling enzyme, a diffuse nonspecific deposition of reaction product was observed. This could be avoided by using cytochrome c instead

    ULTRASTRUCTURAL LOCALIZATION OF CALCITONIN IN THE PARAFOLLICULAR CELLS OF PIG THYROID GLAND WITH CYTOCHROME c-LABELED ANTIBODY FRAGMENTS

    Get PDF
    Parafollicular cells in mammalian thyroid glands are thought to be responsible for the secretion of calcitonin. In this study, calcitonin was localized in pig thyroid gland by an indirect immunocytochemical technique using rabbit antiserum directed against synthetic porcine calcitonin for the first step, and sheep Fab fragments prepared against rabbit Fab and coupled to cytochrome c for the second step. The antigenic determinants of calcitonin were present only in the parafollicular cells, whose secretory granules were heavily labeled. Labeling of the cytoplasmic matrix is thought to indicate a possible leakage of the polypeptide from the granules. A striking observation was the complete absence of labeling in the cisternae of the rough-surfaced endoplasmic reticulum and of the Golgi apparatus. It is concluded that the secretory granules of parafollicular cells contain calcitonin; the mechanism of synthesis of this peptide is not clearly understood
    corecore