6,598 research outputs found

    Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability

    No full text
    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved

    Relating alpha power modulations to competing visuospatial attention theories

    No full text
    Visuospatial attention theories often propose hemispheric asymmetries underlying the control of attention. In general support of these theories, previous EEG/MEG studies have shown that spatial attention is associated with hemispheric modulation of posterior alpha power (gating by inhibition). However, since measures of alpha power are typically expressed as lateralization scores, or collapsed across left and right attention shifts, the individual hemispheric contribution to the attentional control mechanism remains unclear. This is, however, the most crucial and decisive aspect in which the currently competing attention theories continue to disagree. To resolve this long-standing conflict, we derived predictions regarding alpha power modulations from Heilman's hemispatial theory and Kinsbourne's interhemispheric competition theory and tested them empirically in an EEG experiment. We used an attention paradigm capable of isolating alpha power modulation in two attentional states, namely attentional bias in a neutral cue condition and spatial orienting following directional cues. Differential alpha modulations were found for both hemispheres across conditions. When anticipating peripheral visual targets without preceding directional cues (neutral condition), posterior alpha power in the left hemisphere was generally lower and more strongly modulated than in the right hemisphere, in line with the interhemispheric competition theory. Intriguingly, however, while alpha power in the right hemisphere was modulated by both, cue-directed leftward and rightward attention shifts, the left hemisphere only showed modulations by rightward shifts of spatial attention, in line with the hemispatial theory. This suggests that the two theories may not be mutually exclusive, but rather apply to different attentional states

    Left parietal tACS at alpha frequency induces a shift of visuospatial attention

    No full text
    Background Voluntary shifts of visuospatial attention are associated with a lateralization of parieto-occipital alpha power (7-13Hz), i.e. higher power in the hemisphere ipsilateral and lower power contralateral to the locus of attention. Recent noninvasive neuromodulation studies demonstrated that alpha power can be experimentally increased using transcranial alternating current stimulation (tACS). Objective/Hypothesis We hypothesized that tACS at alpha frequency over the left parietal cortex induces shifts of attention to the left hemifield. However, spatial attention shifts not only occur voluntarily (endogenous/ top-down), but also stimulus-driven (exogenous/ bottom-up). To study the task-specificity of the potential effects of tACS on attentional processes, we administered three conceptually different spatial attention tasks. Methods 36 healthy volunteers were recruited from an academic environment. In two separate sessions, we applied either high-density tACS at 10Hz, or sham tACS, for 35–40 minutes to their left parietal cortex. We systematically compared performance on endogenous attention, exogenous attention, and stimulus detection tasks. Results In the endogenous attention task, a greater leftward bias in reaction times was induced during left parietal 10Hz tACS as compared to sham. There were no stimulation effects in either the exogenous attention or the stimulus detection task. Conclusion The study demonstrates that high-density tACS at 10Hz can be used to modulate visuospatial attention performance. The tACS effect is task-specific, indicating that not all forms of attention are equally susceptible to the stimulation

    Renormalization of the quasiparticle hopping integrals by spin interactions in layered copper oxides

    Full text link
    Holes doped within the square CuO2 network specific to the cuprate superconducting materials have oxygen 2p character. We investigate the basic properties of such oxygen holes by wavefunction-based quantum chemical calculations on large embedded clusters. We find that a 2p hole induces ferromagnetic correlations among the nearest-neighbor Cu 3d spins. When moving through the antiferromagnetic background the hole must bring along this spin polarization cloud at nearby Cu sites, which gives rise to a substantial reduction of the effective hopping parameters. Such interactions can explain the relatively low values inferred for the effective hoppings by fitting the angle-resolved photoemission data. The effect of the background antiferromagnetic couplings of renormalizing the effective nearest-neighbor hopping is also confirmed by density-matrix renormalization-group model Hamiltonian calculations for chains and ladders of CuO4 plaquettes

    Een historische uitspraak over gaswinning?

    Get PDF
    Afdeling bestuursrechtspraak van de Raad van State 15 november 2017, ECLI: NL: RVS: 2017: 315

    Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation

    No full text
    In recent years, the influence of alpha (7–13 Hz) phase on visual processing has received a lot of attention. Magneto‐/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre‐determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS‐phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG‐based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo‐)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom‐built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one‐cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation

    Near-Field Scanning Microwave Microscopy in the Single Photon Regime

    Get PDF
    The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 10910^{9} times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime
    • 

    corecore