293 research outputs found

    Mutation analysis in familial breast cancer patients

    Get PDF

    Valuing the Electricity Produced Locally in Renewable Energy Communities through Noncooperative Resources Scheduling Games

    Full text link
    We propose two market designs for the optimal day-ahead scheduling of energy exchanges within renewable energy communities. The first one implements a cooperative demand side management scheme inside a community where members objectives are coupled through grid tariffs, whereas the second allows in addition the valuation of excess generation in the community and on the retail market. Both designs are formulated as centralized optimization problems first, and as non cooperative games then. In the latter case, the existence and efficiency of the corresponding (Generalized) Nash Equilibria are rigorously studied and proven, and distributed implementations of iterative solution algorithms for finding these equilibria are proposed, with proofs of convergence. The models are tested on a use-case made by 55 members with PV generation, storage and flexible appliances, and compared with a benchmark situation where members act individually (situation without community). We compute the global REC costs and individual bills, inefficiencies of the decentralized models compared to the centralized optima, as well as technical indices such as self-consumption ratio, self-sufficiency ratio, and peak-to-average ratio

    Comparative Study of Optimally Designed DC-DC Converters with SiC and Si Power Devices

    Get PDF
    In this chapter, power losses and mass of optimally designed Si- vs. SiC-based isolated DC-DC converters are compared in quantitative terms. To that end, an adapted version of a computer-aided design tool, previously published by the authors, is used. The database of the existing tool was completed with new wide band gap semiconductor devices currently available from manufacturers. The results are presented for two switch-mode power supplies, each constituted of an isolated DC-DC converter, operating at very different power levels: a 100 kW auxiliary railway power supply and a multiple output 33.5 W power supply intended for a space application. The gains in terms of power losses and mass from one technology to the other can advantageously be evaluated thanks to the developed tool

    Influence of RT-qPCR primer position on EGFR interference efficacy in lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real-time quantitative RT-PCR (RT-qPCR) is a "gold" standard for measuring steady state mRNA levels in RNA interference assays. The knockdown of the epidermal growth factor receptor (EGFR) gene with eight individual EGFR small interfering RNAs (siRNAs) was estimated by RT-qPCR using three different RT-qPCR primer sets.</p> <p>Results</p> <p>Our results indicate that accurate measurement of siRNA efficacy by RT-qPCR requires careful attention for the selection of the primers used to amplify the target EGFR mRNA.</p> <p>Conclusions</p> <p>We conclude that when assessing siRNA efficacy with RT-qPCR, more than one primer set targeting different regions of the mRNA should be evaluated and at least one of these primer sets should amplify a region encompassing the siRNA recognition sequence.</p

    Finite element models for studying the capacitive behaviour of wound components

    Full text link
    peer reviewedFinite element models of increasing accuracy are proposed for the study of the capacitive behaviour of wound magnetic components. Simple models, which are based on the classical assumption of a decoupling between electric and magnetic fields, are first described. Formulations which enable such a coupling are then presented. The models are tested on various coreless inductors, made of round conductors or copper sheets. The results are discussed and compared with experimental data measured with an impedance analyzer

    Planning Tools for the Integration of Renewable Energy Sources Into Low- and Medium-Voltage Distribution Grids

    Get PDF
    This chapter presents two probabilistic planning tools developed for the long-term analysis of distribution networks. The first one focuses on the low-voltage (LV) level and the second one addresses the issues occurring in the medium-voltage (MV) grid. Both tools use Monte Carlo algorithms in order to simulate the distribution network, taking into account the stochastic nature of the loading parameters at its nodes. Section 1 introduces the probabilistic framework that focuses on the analysis of LV feeders with distributed photovoltaic (PV) generation using quarter-hourly smart metering data of load and generation at each node of a feeder. This probabilistic framework is evaluated by simulating a real LV feeder in Belgium considering its actual loading parameters and components. In order to demonstrate the interest of the presented framework for the distribution system operators (DSOs), the same feeder is then simulated considering future scenarios of higher PV integration as well as the application of mitigation solutions (reactive power control, P/V droop control thanks to a local management of PV inverters, etc.) to actual LV network operational issues arising from the integration of distributed PV generation. Section 2 introduces the second planning tool designed to help the DSO, making the best investment for alleviating the MV-network stressed conditions. Practically, this tool aims at finding the optimal positioning and sizing of the devices designed to improve the operation of the distribution grid. Then a centralized control of these facilities is implemented in order to assess the effectiveness of the proposed approach. The simulation is carried out under various load and generation profiles, while the evaluation criteria of the methodology are the probabilities of voltage violation, the presence of congestions and the total line losses

    Targeting Polo-like kinase 1 and TRAIL enhances apoptosis in non-small cell lung cancer

    Get PDF
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in cancer cells without causing damage to normal cells. However, some tumors are resistant to TRAIL monotherapy and clinical studies assessing targeted agents towards the TRAIL receptor have failed to show robust therapeutic activity. Evidence has shown that standard anti-mitotic drugs can induce synergistic apoptosis upon combination with TRAIL via cell cycle arrest. Polo like kinase-1 (PLK1) plays a critical role in different stages of cell cycle progression and mitosis. A number of investigations have demonstrated that PLK1 inhibition causes cell cycle arrest and mitotic catastrophe in non-small cell lung cancer (NSCLC), and we thus postulated that PLK1 inhibition could enhance TRAIL-induced apoptosis. We demonstrate that the combination of a TRAIL receptor agonist and a PLK1 inhibitor synergistically reduces cell viability, and strongly increases apoptosis in NSCLC cellular models. Consistent with our in vitro observations, this drug combination also significantly reduces tumor growth in vivo. Our data additionally reveal that G2/M cell cycle arrest and downregulation of Mcl-1 and signal transducer and activator of transcription 3 (STAT3) activity following PLK1 inhibition may contribute to the sensitization of TRAIL-induced apoptosis in NSCLC. Together, these data support the further exploration of combined TRAIL and PLK1 inhibition in the treatment of NSCLC
    corecore